Page 228 - 《软件学报》2025年第4期
P. 228
1634 软件学报 2025 年第 36 卷第 4 期
References:
[1] Zhou GD, Su J, Zhang J, Zhang M. Exploring various knowledge in relation extraction. In: Proc. of the 43rd Annual Meeting on
Association for Computational Linguistics. Ann Arbor: ACL, 2005. 427–434. [doi: 10.3115/1219840.1219893]
[2] Devlin J, Chang MW, Lee K, Toutanova K. BERT: Pre-training of deep bidirectional Transformers for language understanding. In: Proc.
of the 2019 North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Minneapolis:
ACL, 2019. 4171–4186. [doi: 10.18653/v1/N19-1423]
[3] Soares LB, Fitzgerald N, Ling J, Kwiatkowski T. Matching the blanks: Distributional similarity for relation learning. In: Proc. of the 57th
Annual Meeting of the Association for Computational Linguistics. Florence: ACL, 2019. 2895–2905. [doi: 10.18653/v1/P19-1279]
[4] Hendrickx I, Kim SN, Kozareva Z, Nakov P, Séaghdha DÓ, Padó S, Pennacchiotti M, Romano L, Szpakowicz S. SemEval-2010 Task 8:
Multi-way classification of semantic relations between pairs of nominals. In: Proc. of the 5th Int’l Workshop on Semantic Evaluation.
Uppsala: ACL, 2010. 33–38.
[5] Zhang, YH, Zhong V, Chen DQ, Angeli G, Manning CD. Position-aware attention and supervised data improve slot filling. In: Proc. of
the 2017 Conf. on Empirical Methods in Natural Language Processing. Copenhagen: ACL, 2017. 35–45. [doi: 10.18653/v1/D17-1004]
[6] Mintz M, Bills S, Snow R, Jurafsky D. Distant supervision for relation extraction without labeled data. In: Proc. of the Joint Conf. of the
47th Annual Meeting of the ACL and the 4th Int’l Joint Conf. on Natural Language Processing of the AFNLP. Suntec: ACL, 2009.
1003–1011. [doi: 10.5555/1690219.1690287]
[7] Luo F, Nagesh A, Sharp R, Surdeanu M. Semi-supervised teacher-student architecture for relation extraction. In: Proc. of the 3rd
Workshop on Structured Prediction for NLP. Minneapolis: ACL, 2019. 29–37. [doi: 10.18653/v1/W19-1505]
[8] Yu JJ, Zhu T, Chen WL, Zhang W, Zhang M. Improving relation extraction with relational paraphrase sentences. In: Proc. of the 28th Int’l
Conf. on Computational Linguistics. Barcelona: Int’l Committee on Computational Linguistics, 2020. 1687–1698. [doi: 10.18653/v1/
2020.coling-main.148]
[9] Xie QZ, Luong MT, Hovy E, Le QV. Self-training with noisy student improves ImageNet classification. In: Proc. of the 2020 IEEE/CVF
Conf. on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020. 10684–10695. [doi: 10.1109/CVPR42600.2020.01070]
[10] Qian LH, Zhou GD, Kong F, Zhu QM. Semi-supervised learning for semantic relation classification using stratified sampling strategy. In:
Proc. of the 2009 Conf. on Empirical Methods in Natural Language Processing. Singapore: ACL, 2009. 1437–1445.
[11] Du JF, Grave E, Gunel B, Chaudhary V, Celebi O, Auli M, Stoyanov V, Conneau A. Self-training improves pre-training for natural
language understanding. In: Proc. of the 2021 Conf. of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies. ACL, 2021. 5408–5418. [doi: 10.18653/v1/2021.naacl-main.426]
[12] Liu Y, Hu JP, Wan X, Chang TH. A simple yet effective relation information guided approach for few-shot relation extraction. In: Proc.
Amini MR, Feofanov V, Pauletto L, Hadjadj L, Devijver E, Maximov Y. Self-training: A survey. arXiv:2202.12040, 2022.
[13] Xu X, Chen X, Zhang NY, Xie X, Chen X, Chen HJ. Towards realistic low-resource relation extraction: A benchmark with empirical
baseline study. In: Proc. of the Findings of the Association for Computational Linguistics. Abu Dhabi: ACL, 2022. 413–427. [doi: 10.
18653/v1/2022.findings-emnlp.29]
[14] Ouyang DT, Qu JF, Ye YX. Extending training set in distant supervision by ontology for relation extraction. Ruan Jian Xue Bao/Journal
of Software, 2014, 25(9): 2088–2101 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/4638.htm [doi: 10.13328/j.cnki.
jos.004638]
[15] Yang S, Zhang YF, Niu GL, Zhao QH, Pu SL. Entity concept-enhanced few-shot relation extraction. In: Proc. of the 59th Annual Meeting
of the Association for Computational Linguistics and the 11th Int’l Joint Conf. on Natural Language Processing. ACL, 2021. 987–991.
[doi: 10.18653/v1/2021.acl-short.124]
[16] Dong MQ, Pan CG, Luo ZP. MapRE: An effective semantic mapping approach for low-resource relation extraction. In: Proc. of the 2021
Conf. on Empirical Methods in Natural Language Processing. Punta Cana: ACL, 2021. 2694–2704. [doi: 10.18653/v1/2021.emnlp-
main.212]
[17]
of the 2022 Findings of the Association for Computational Linguistics. Dublin: ACL, 2022. 757–763. [doi: 10.18653/v1/2022.findings-
acl.62]
[18] Zhu SY, Hui HT, Qian LH, Zhang M. Family relation extraction from Wikipedia by self-supervised learning. Journal of Computer
Applications, 2015, 35(4): 1013–1016, 1020 (in Chinese with English abstract). [doi: 10.11772/j.issn.1001-9081.2015.04.1013]
[19] Hu YN, Shu JG, Qian LH, Zhu QM. Cross-lingual relation extraction via machine translation. Journal of Chinese Information Processing,
2013, 27(5): 191–198 (in Chinese with English abstract). [doi: 10.3969/j.issn.1003-0077.2013.05.028]
[20] Zoph B, Ghiasi G, Lin TY, Cui Y, Liu HX, Cubuk ED, Le Q. Rethinking pre-training and self-training. In: Proc. of the 34th Int’l Conf. on