Page 228 - 《软件学报》2025年第4期
P. 228

1634                                                       软件学报  2025  年第  36  卷第  4  期


                 References:
                  [1]  Zhou  GD,  Su  J,  Zhang  J,  Zhang  M.  Exploring  various  knowledge  in  relation  extraction.  In:  Proc.  of  the  43rd  Annual  Meeting  on
                     Association for Computational Linguistics. Ann Arbor: ACL, 2005. 427–434. [doi: 10.3115/1219840.1219893]
                  [2]  Devlin J, Chang MW, Lee K, Toutanova K. BERT: Pre-training of deep bidirectional Transformers for language understanding. In: Proc.
                     of the 2019 North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Minneapolis:
                     ACL, 2019. 4171–4186. [doi: 10.18653/v1/N19-1423]
                  [3]  Soares LB, Fitzgerald N, Ling J, Kwiatkowski T. Matching the blanks: Distributional similarity for relation learning. In: Proc. of the 57th
                     Annual Meeting of the Association for Computational Linguistics. Florence: ACL, 2019. 2895–2905. [doi: 10.18653/v1/P19-1279]
                  [4]  Hendrickx I, Kim SN, Kozareva Z, Nakov P, Séaghdha DÓ, Padó S, Pennacchiotti M, Romano L, Szpakowicz S. SemEval-2010 Task 8:
                     Multi-way classification of semantic relations between pairs of nominals. In: Proc. of the 5th Int’l Workshop on Semantic Evaluation.
                     Uppsala: ACL, 2010. 33–38.
                  [5]  Zhang, YH, Zhong V, Chen DQ, Angeli G, Manning CD. Position-aware attention and supervised data improve slot filling. In: Proc. of
                     the 2017 Conf. on Empirical Methods in Natural Language Processing. Copenhagen: ACL, 2017. 35–45. [doi: 10.18653/v1/D17-1004]
                  [6]  Mintz M, Bills S, Snow R, Jurafsky D. Distant supervision for relation extraction without labeled data. In: Proc. of the Joint Conf. of the
                     47th Annual Meeting of the ACL and the 4th Int’l Joint Conf. on Natural Language Processing of the AFNLP. Suntec: ACL, 2009.
                     1003–1011. [doi: 10.5555/1690219.1690287]
                  [7]  Luo  F,  Nagesh  A,  Sharp  R,  Surdeanu  M.  Semi-supervised  teacher-student  architecture  for  relation  extraction.  In:  Proc.  of  the  3rd
                     Workshop on Structured Prediction for NLP. Minneapolis: ACL, 2019. 29–37. [doi: 10.18653/v1/W19-1505]
                  [8]  Yu JJ, Zhu T, Chen WL, Zhang W, Zhang M. Improving relation extraction with relational paraphrase sentences. In: Proc. of the 28th Int’l
                     Conf.  on  Computational  Linguistics.  Barcelona:  Int’l  Committee  on  Computational  Linguistics,  2020.  1687–1698.  [doi:  10.18653/v1/
                     2020.coling-main.148]
                  [9]  Xie QZ, Luong MT, Hovy E, Le QV. Self-training with noisy student improves ImageNet classification. In: Proc. of the 2020 IEEE/CVF
                     Conf. on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020. 10684–10695. [doi: 10.1109/CVPR42600.2020.01070]
                 [10]  Qian LH, Zhou GD, Kong F, Zhu QM. Semi-supervised learning for semantic relation classification using stratified sampling strategy. In:
                     Proc. of the 2009 Conf. on Empirical Methods in Natural Language Processing. Singapore: ACL, 2009. 1437–1445.
                 [11]  Du JF, Grave E, Gunel B, Chaudhary V, Celebi O, Auli M, Stoyanov V, Conneau A. Self-training improves pre-training for natural
                     language understanding. In: Proc. of the 2021 Conf. of the North American Chapter of the Association for Computational Linguistics:
                     Human Language Technologies. ACL, 2021. 5408–5418. [doi: 10.18653/v1/2021.naacl-main.426]
                 [12] Liu Y, Hu JP, Wan X, Chang TH. A simple yet effective relation information guided approach for few-shot relation extraction. In: Proc.
                     Amini MR, Feofanov V, Pauletto L, Hadjadj L, Devijver E, Maximov Y. Self-training: A survey. arXiv:2202.12040, 2022.
                 [13]  Xu X, Chen X, Zhang NY, Xie X, Chen X, Chen HJ. Towards realistic low-resource relation extraction: A benchmark with empirical
                     baseline study. In: Proc. of the Findings of the Association for Computational Linguistics. Abu Dhabi: ACL, 2022. 413–427. [doi: 10.
                     18653/v1/2022.findings-emnlp.29]
                 [14]  Ouyang DT, Qu JF, Ye YX. Extending training set in distant supervision by ontology for relation extraction. Ruan Jian Xue Bao/Journal
                     of Software, 2014, 25(9): 2088–2101 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/4638.htm [doi: 10.13328/j.cnki.
                     jos.004638]
                 [15]  Yang S, Zhang YF, Niu GL, Zhao QH, Pu SL. Entity concept-enhanced few-shot relation extraction. In: Proc. of the 59th Annual Meeting
                     of the Association for Computational Linguistics and the 11th Int’l Joint Conf. on Natural Language Processing. ACL, 2021. 987–991.
                     [doi: 10.18653/v1/2021.acl-short.124]
                 [16]  Dong MQ, Pan CG, Luo ZP. MapRE: An effective semantic mapping approach for low-resource relation extraction. In: Proc. of the 2021
                     Conf.  on  Empirical  Methods  in  Natural  Language  Processing.  Punta  Cana:  ACL,  2021.  2694–2704.  [doi: 10.18653/v1/2021.emnlp-
                     main.212]
                 [17]
                     of the 2022 Findings of the Association for Computational Linguistics. Dublin: ACL, 2022. 757–763. [doi: 10.18653/v1/2022.findings-
                     acl.62]
                 [18]  Zhu  SY,  Hui  HT,  Qian  LH,  Zhang  M.  Family  relation  extraction  from  Wikipedia  by  self-supervised  learning.  Journal  of  Computer
                     Applications, 2015, 35(4): 1013–1016, 1020 (in Chinese with English abstract). [doi: 10.11772/j.issn.1001-9081.2015.04.1013]
                 [19]  Hu YN, Shu JG, Qian LH, Zhu QM. Cross-lingual relation extraction via machine translation. Journal of Chinese Information Processing,
                     2013, 27(5): 191–198 (in Chinese with English abstract). [doi: 10.3969/j.issn.1003-0077.2013.05.028]
                 [20]  Zoph B, Ghiasi G, Lin TY, Cui Y, Liu HX, Cubuk ED, Le Q. Rethinking pre-training and self-training. In: Proc. of the 34th Int’l Conf. on
   223   224   225   226   227   228   229   230   231   232   233