Page 229 - 《软件学报》2025年第4期
P. 229

郁俊杰 等: 面向低资源关系抽取的自训练方法                                                          1635


                     Neural Information Processing Systems. Vancouver: Curran Associates Inc., 2020. 323. [doi: 10.5555/3495724.3496047]
                 [21]  Lee  DH.  Pseudo-label:  The  simple  and  efficient  semi-supervised  learning  method  for  deep  neural  networks.  In:  Proc.  of  the  2013
                     Workshop on Challenges in Representation Learning. 2013. 896.
                 [22]  Zhang JJ, Zong CQ. Exploiting source-side monolingual data in neural machine translation. In: Proc. of the 2016 Conf. on Empirical
                     Methods in Natural Language Processing. Austin: ACL, 2016. 1535–1545. [doi: 10.18653/v1/D16-1160]
                 [23]  Sachan M, Xing E. Self-training for jointly learning to ask and answer questions. In: Proc. of the 2018 Conf. of the North American
                     Chapter of the Association for Computational Linguistics: Human Language Technologies. New Orleans: ACL, 2018. 629–640. [doi: 10.
                     18653/v1/N18-1058]
                 [24]  Rotman  G,  Reichart  R.  Deep  contextualized  self-training  for  low  resource  dependency  parsing.  Trans.  of  the  Association  for
                     Computational Linguistics, 2019, 7: 695–713. [doi: 10.1162/tacl_a_00294]
                 [25]  Hu XM, Zhang CW, Ma FK, Liu CY, Wen LJ, Philip SY. Semi-supervised relation extraction via incremental meta self-training. In: Proc.
                     of  the  2021  Findings  of  the  Association  for  Computational  Linguistics.  Punta  Cana:  ACL,  2021.  487–496.  [doi:  10.18653/v1/2021.
                     findings-emnlp.44]
                 [26]  Xu BF, Wang Q, Lyu YJ, Dai D, Zhang YD, Mao ZD. S2ynRE: Two-stage self-training with synthetic data for low-resource relation
                     extraction. In: Proc. of the 61st Annual Meeting of the Association for Computational Linguistics. Toronto: ACL, 2023. 8186–8207.
                     [doi: 10.18653/v1/2023.acl-long.455]
                 [27]  Zhao  SQ,  Liu  T,  Li  S.  Research  on  paraphrasing  technology.  Ruan  Jian  Xue  Bao/Journal  of  Software,  2009,  20(8):  2124–2137  (in
                     Chinese with English abstract). http://www.jos.org.cn/1000-9825/3587.htm [doi: 10.3724/SP.J.1001.2009.03587]
                 [28]  Zhu HY, Jin ZL, Hong Y, Su YL, Zhang M. Directional data augmentation for question paraphrase identification. Journal of Chinese
                     Information Processing, 2022, 36(9): 38–45 (in Chinese with English abstract). [doi: 10.3969/j.issn.1003-0077.2022.09.004]
                 [29]  Wei J, Bosma M, Zhao VY, Guu K, Yu AW, Lester B, Du N, Dai AM, Le QV. Finetuned language models are zero-shot learners. In:
                     Proc. of the 10th Int’l Conf. on Learning Representations. 2022.
                 [30]  Brown TB, Mann B, Ryder N, Subbiah M, Kaplan J, Dhariwal P, Neelakantan A, Shyam P, Sastry G, Askell A, Agarwal S, Herbert-Voss
                     A, Krueger G, Henighan T, Child R, Ramesh A, Ziegler DM, Wu J, Winter C, Hesse C, Chen M, Sigler E, Litwin M, Gray S, Chess B,
                     Clark J, Berner C, McCandlish S, Radford A, Sutskever I, Amodei D. Language models are few-shot learners. In: Proc. of the 34th Conf.
                     on Neural Information Processing Systems. 2020. 1877–1901.
                 [31]  Kojima T, Gu SS, Reid M, Matsuo Y, Iwasawa Y. Large language models are zero-shot reasoners. In: Proc. of the 36th Conf. on Neural
                     Information Processing Systems. 2022. 22199–22213.
                 [32] AAAI, 2019. 3542–3549. [doi: 10.1609/aaai.v33i01.33013542]
                     Liu PF, Yuan WZ, Fu JL, Jiang ZB, Hayashi H, Neubig G. Pre-train, prompt, and predict: A systematic survey of prompting methods in
                     natural language processing. ACM Computing Surveys, 2023, 55(9): 195. [doi: 10.1145/3560815]
                 [33]  Tang TY, Lu HY, Jiang YE, Huang HY, Zhang DD, Zhao WX, Kocmi T, Wei FR. Not all metrics are guilty: Improving NLG evaluation
                     by diversifying references. arXiv:2305.15067, 2024.
                 [34]  Cour T, Sapp B, Taskar B. Learning from partial labels. The Journal of Machine Learning Research, 2011, 12: 1501–1536. [doi: 10.5555/
                     1953048.2021049]
                 [35]  Li ZH, Zhang M, Chen WL. Ambiguity-aware ensemble training for semi-supervised dependency parsing. In: Proc. of the 52nd Annual
                     Meeting of the Association for Computational Linguistics. Baltimore: ACL, 2014. 457–467. [doi: 10.3115/v1/P14-1043]
                 [36]  Xie MK, Huang SJ. Partial multi-label learning with noisy label identification. In: Proc. of the 34th AAAI Conf. on Artificial Intelligence.
                     New York: AAAI, 2020. 6454–6461. [doi: 10.1609/aaai.v34i04.6117]
                 [37]  Nguyen N, Caruana R. Classification with partial labels. In: Proc. of the 14th ACM SIGKDD Int’l Conf. on Knowledge Discovery and
                     Data Mining. Las Vegas: ACM, 2008. 551–559. [doi: 10.1145/1401890.1401958]
                 [38]  Feng L, An B. Partial label learning with self-guided retraining. In: Proc. of the 33rd AAAI Conf. on Artificial Intelligence. Honolulu:

                 [39]  Yan Y, Guo YH. Partial label learning with batch label correction. In: Proc. of the 34th AAAI Conf. on Artificial Intelligence. New York:
                     AAAI, 2020. 6575–6582. [doi: 10.1609/aaai.v34i04.6132]
                 [40]  Wu DD, Wang DB, Zhang ML. Revisiting consistency regularization for deep partial label learning. In: Proc. of the 39th Int’l Conf. on
                     Machine Learning. 2022. 24212–24225.
                 [41]  E HH, Zhang WJ, Xiao SQ, Cheng R, Hu YX, Zhou XS, Niu PQ. Survey of entity relationship extraction based on deep learning. Ruan
                     Jian Xue Bao/Journal of Software, 2019, 30(6): 1793–1818 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/5817.
                     htm [doi: 10.13328/j.cnki.jos.005817]
   224   225   226   227   228   229   230   231   232   233   234