Page 198 - 《软件学报》2025年第4期
P. 198

软件学报 ISSN 1000-9825, CODEN RUXUEW                                        E-mail: jos@iscas.ac.cn
                 2025,36(4):1604−1619 [doi: 10.13328/j.cnki.jos.007215] [CSTR: 32375.14.jos.007215]  http://www.jos.org.cn
                 ©中国科学院软件研究所版权所有.                                                          Tel: +86-10-62562563



                                                              *
                 基于可控性解释的混合数据增强框架

                 孙泽辰,    肖义胜,    李俊涛,    张    民,    周国栋


                 (苏州大学 计算机科学与技术学院, 江苏 苏州 215008)
                 通信作者: 李俊涛, E-mail: ljt@suda.edu.cn

                 摘 要: 先前的预训练语言模型已在众多自然语言理解任务中展现了其卓越的性能. 然而, 它们常表现出捷径学习
                 的问题, 即学习了非鲁棒性特征与标签之间的虚假关联, 导致模型在不同于训练分布的测试场景中的泛化能力不
                 佳. 近期, 生成式预训练大模型在理解任务中的出色表现引起了广泛的关注, 但它们是否受到捷径学习的影响尚未
                 被充分研究. 以    LLaMA  系列模型与    FLAN-T5  模型为代表, 探究生成式预训练大模型在多个自然语言理解任务中
                 的捷径学习现象. 研究结果表明, 近期流行的生成式大模型仍然存在捷径学习的问题. 进而, 提出针对生成式预训

                 练大模型的捷径学习问题的缓解策略——基于可控性解释的混合数据增强框架. 该框架以数据为中心, 基于模型
                 生成的可控性解释数据与部分原始提示性数据构造小规模混合数据集, 开展模型微调. 在                             3  个具有代表性的自然
                 语言理解任务中的大量实验结果表明, 使用该框架所构造的数据集训练模型能够有效缓解模型的捷径学习问题,
                 提升模型在分布外测试场景中的鲁棒性与泛化能力, 同时不牺牲甚至提升模型在分布内测试场景中的性能. 代码
                 已公开发布在     https://github.com/Mint9996/HEDA.
                 关键词: 捷径学习; 生成式预训练语言模型; 自然语言理解
                 中图法分类号: TP18

                 中文引用格式: 孙泽辰, 肖义胜, 李俊涛, 张民, 周国栋. 基于可控性解释的混合数据增强框架. 软件学报, 2025, 36(4): 1604–1619.
                 http://www.jos.org.cn/1000-9825/7215.htm
                 英文引用格式: Sun ZC, Xiao YS, Li JT, Zhang M, Zhou GD. Hybrid Data Augmentation Framework Based on Controllable
                 Explanation. Ruan Jian Xue Bao/Journal of Software, 2025, 36(4): 1604–1619 (in Chinese). http://www.jos.org.cn/1000-9825/7215.htm
                 Hybrid Data Augmentation Framework Based on Controllable Explanation

                 SUN Ze-Chen, XIAO Yi-Sheng, LI Jun-Tao, ZHANG Min, ZHOU Guo-Dong
                 (School of Computer Science and Technology, Soochow University, Suzhou 215008, China)
                 Abstract:  Previous  pre-trained  language  models  (PLMs)  have  demonstrated  excellent  performance  in  numerous  tasks  of  natural  language
                 understanding  (NLU).  However,  they  generally  suffer  shortcut  learning,  which  means  learning  the  spurious  correlations  between  non-robust
                 features  and  labels,  resulting  in  poor  generalization  in  out-of-distribution  (OOD)  test  scenarios.  Recently,  the  outstanding  performance  of
                 generative  large  language  models  (LLMs)  in  understanding  tasks  has  attracted  widespread  attention,  but  the  extent  to  which  it  is  affected
                 by  shortcut  learning  has  not  been  fully  studied.  In  this  paper,  the  shortcut  learning  effect  of  generative  LLMs  in  three  NLU  tasks  is
                 investigated  for  the  first  time  using  the  LLaMA  series  models  and  FLAN-T5  models  as  representatives.  The  results  show  that  the  shortcut
                 learning  problem  still  exists  in  generative  LLMs.  Therefore,  a  hybrid  data  augmentation  framework  is  proposed  based  on  controllable
                 explanations  as  a  mitigation  strategy  for  the  shortcut  learning  problem  in  generative  LLMs.  The  framework  is  data-centric,  constructing  a
                 small-scale  mix  dataset  composed  of  model-generated  controllable  explain  data  and  partial  original  prompting  data  for  model  fine-tuning.
                 The  experimental  results  in  three  representative  NLU  tasks  show  that  the  framework  can  effectively  mitigate  shortcut  learning,  and
                 significantly  improve  the  robustness  and  generalization  of  the  model  in  OOD  test  scenarios  while  avoiding  sacrifice  of  or  even  improving


                 *    基金项目: 国家自然科学基金  (62206194); 江苏省自然科学基金  (BK20220488)
                  孙泽辰和肖义胜为共同第一作者.
                  收稿时间: 2023-10-18; 修改时间: 2024-02-03, 2024-03-27; 采用时间: 2024-04-15; jos 在线出版时间: 2024-06-20
                  CNKI 网络首发时间: 2024-06-21
   193   194   195   196   197   198   199   200   201   202   203