Page 196 - 《软件学报》2025年第4期
P. 196
1602 软件学报 2025 年第 36 卷第 4 期
[7] Yang BS, Yih WT, He XD, Gao JF, Deng L. Embedding entities and relations for learning and inference in knowledge bases.
arXiv:1412.6575, 2015.
[8] Trouillon T, Welbl J, Riedel S, Gaussier É, Bouchard G. Complex embeddings for simple link prediction. In: Proc. of the 33rd Int’l Conf.
on Machine Learning. New York: JMLR.org, 2016. 2071–2080.
[9] Yao L, Mao CS, Luo Y. KG-BERT: BERT for knowledge graph completion. arXiv:1909.03193, 2019.
[10] Wang M, Wang S, Yang H, Zhang Z, Chen X, Qi GL. Is visual context really helpful for knowledge graph? A representation learning
perspective. In: Proc. of the 29th ACM Int’l Conf. on Multimedia. ACM, 2021. 2735–2743. [doi: 10.1145/3474085.3475470]
[11] Zhang NY, Xie X, Chen X, Deng SM, Ye HB, Chen HJ. Knowledge collaborative fine-tuning for low-resource knowledge graph
completion. Ruan Jian Xue Bao/Journal of Software, 2022, 33(10): 3531–3545 (in Chinese with English abstract). http://www.jos.org.cn/
1000-9825/6628.htm [doi: 10.13328/j.cnki.jos.006628]
[12] Kipf TN, Welling M. Semi-supervised classification with graph convolutional networks. arXiv:1609.02907, 2017.
[13] Wang Z, Zhang JW, Feng JL, Chen Z. Knowledge graph embedding by translating on hyperplanes. In: Proc. of the 28th AAAI Conf. on
Artificial Intelligence. Québec City: AAAI, 2014. 1112–1119. [doi: 10.1609/aaai.v28i1.8870]
[14] Dettmers T, Minervini P, Stenetorp P, Riedel S. Convolutional 2D knowledge graph embeddings. In: Proc. of the 32nd AAAI Conf. on
Artificial Intelligence. New Orleans: AAAI, 2018. 1811–1818. [doi: 10.1609/aaai.v32i1.11573]
[15] Nguyen DQ, Nguyen TD, Nguyen DQ, Phung D. A novel embedding model for knowledge base completion based on convolutional
neural network. In: Proc. of the 2018 Conf. of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Vol. 2 (Short Papers). New Orleans: Association for Computational Linguistics, 2018. 327–333. [doi: 10.18653/
v1/N18-2053]
[16] Chen X, Zhang NY, Li L, Deng SM, Tan CQ, Xu CL, Huang F, Si L, Chen HJ. Hybrid Transformer with multi-level fusion for
multimodal knowledge graph completion. In: Proc. of the 45th Int’l ACM SIGIR Conf. on Research and Development in Information
Retrieval. Madrid: ACM, 2022. 904–915. [doi: 10.1145/3477495.3531992]
[17] Zhang YC, Chen MY, Zhang W. Modality-aware negative sampling for multi-modal knowledge graph embedding. In: Proc. of the 2023
Int’l Joint Conf. on Neural Networks (IJCNN). Gold Coast: IEEE, 2023. 1–8. [doi: 10.1109/IJCNN54540.2023.10191314]
[18] Liang WX, Jiang YH, Liu ZX. GraghVQA: Language-guided graph neural networks for graph-based visual question answering.
arXiv:2104.10283, 2021.
[19] Ghosal D, Majumder N, Poria S, Chhaya N, Gelbukh A. DialogueGCN: A graph convolutional neural network for emotion recognition in
conversation. In: Proc. of the 2019 Conf. on Empirical Methods in Natural Language Processing and the 9th Int’l Joint Conf. on Natural
Language Processing (EMNLP-IJCNLP). Hong Kong: Association for Computational Linguistics, 2019. 154–164. [doi: 10.18653/v1/D19-
1015]
[20] Ying CX, Cai TL, Luo SJ, Zheng SX, Ke GL, He D, Shen YM, Liu TY. Do Transformers really perform bad for graph representation?
arXiv:2106.05234, 2021.
[21] Schlichtkrull M, Kipf TN, Bloem P, van den Berg R, Titov I, Welling M. Modeling relational data with graph convolutional networks. In:
Proc. of the 15th Int’l Conf. on the Semantic Web. Heraklion: Springer, 2018. 593–607. [doi: 10.1007/978-3-319-93417-4_38]
[22] Vashishth S, Sanyal S, Nitin V, Talukdar P. Composition-based multi-relational graph convolutional networks. arXiv:1911.03082, 2020.
[23] Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł, Polosukhin I. Attention is all you need. In: Proc. of the
31st Int’l Conf. on Neural Information Processing Systems. Long Beach: Curran Associates Inc., 2017. 6000–6010.
[24] Radford A, Kim JW, Hallacy C, Ramesh A, Goh G, Agarwal S, Sastry G, Askell A, Mishkin P, Clark J, Krueger G, Sutskever I. Learning
transferable visual models from natural language supervision. In: Proc. of the 38th Int’l Conf. on Machine Learning. 2021. 8748–8763.
[25] Zhang D, Wei SZ, Li SS, Wu HQ, Zhu QM, Zhou GD. Multi-modal graph fusion for named entity recognition with targeted visual
guidance. In: Proc. of the 35th AAAI Conf. on Artificial Intelligence. AAAI, 2021. 14347–14355. [doi: 10.1609/aaai.v35i16.17687]
[26] Zheng CM, Feng JH, Fu Z, Cai Y, Li Q, Wang T. Multimodal relation extraction with efficient graph alignment. In: Proc. of the 29th
ACM Int’l Conf. on Multimedia. ACM, 2021. 5298–5306. [doi: 10.1145/3474085.3476968]
[27] Sun H, Wang HY, Liu JQ, Chen YW, Lin LF. CubeMLP: An MLP-based model for multimodal sentiment analysis and depression
estimation. In: Proc. of the 30th ACM Int’l Conf. on Multimedia. Lisboa: ACM, 2022. 3722–3729. [doi: 10.1145/3503161.3548025]
[28] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural Computation, 2000, 12(10):
2451–2471. [doi: 10.1162/089976600300015015]
[29] Chung J, Gulcehre C, Cho K, Bengio Y. Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv:
1412.3555, 2014.
[30] Zhang CX, Song DJ, Huang C, Swami A, Chawla NV. Heterogeneous graph neural network. In: Proc. of the 25th ACM SIGKDD Int’l