Page 197 - 《软件学报》2025年第4期
P. 197
陈强 等: 融合任务知识的多模态知识图谱补全 1603
Conf. on Knowledge Discovery & Data Mining. Anchorage: ACM, 2019. 793–803. [doi: 10.1145/3292500.3330961]
[31] Nickel M, Rosasco L, Poggio T. Holographic embeddings of knowledge graphs. In: Proc. of the 30th AAAI Conf. on Artificial
Intelligence. Phoenix: AAAI, 2016. 1955–1961. [doi: 10.1609/aaai.v30i1.10314]
[32] Toutanova K, Chen DQ, Pantel P, Poon H, Choudhury P, Gamon M. Representing text for joint embedding of text and knowledge bases.
In: Proc. of the 2015 Conf. on Empirical Methods in Natural Language Processing. Lisbon: Association for Computational Linguistics,
2015. 1499–1509. [doi: 10.18653/v1/D15-1174]
[33] Xie RB, Liu ZY, Luan HB, Sun MS. Image-embodied knowledge representation learning. arXiv:1609.07028, 2017.
[34] Kingma DP, Ba J. Adam: A method for stochastic optimization. arXiv:1412.6980, 2017.
[35] Hinton GE, Srivastava N, Krizhevsky A, Sutskever I, Salakhutdinov RR. Improving neural networks by preventing co-adaptation of
feature detectors. arXiv:1207.0580, 2012.
[36] Chen ZR, Wang X, Wang CX, Zhang SW, Yan HY. Towards time-aware knowledge hypergraph link prediction. Ruan Jian Xue
Bao/Journal of Software, 2023, 34(10): 4533–4547 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/6888.htm [doi:
10.13328/j.cnki.jos.006888]
[37] Pang J, Liu XQ, Gu Y, Wang X, Zhao YH, Zhang XL, Yu G. Knowledge hypergraph link prediction based on multi-granular attention
network. Ruan Jian Xue Bao/Journal of Software, 2023, 34(3): 1259–1276 (in Chinese with English abstract). http://www.jos.org.cn/1000-
9825/6788.htm [doi: 10.13328/j.cnki.jos.006788]
[38] Li LH, Yatskar M, Yin D, Hsieh CJ, Chang KW. VisualBERT: A simple and performant baseline for vision and language.
arXiv:1908.03557, 2019.
[39] Lu JS, Batra D, Parikh D, Lee S. ViLBERT: Pretraining task-agnostic visiolinguistic representations for vision-and-language tasks. In:
Proc. of the 33rd Int’l Conf. on Neural Information Processing Systems. Vancouver: Curran Associates Inc., 2019. 13–23.
[40] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556, 2015.
[41] He KM, Zhang XY, Ren SQ, Sun J. Deep residual learning for image recognition. In: Proc. of the 2016 IEEE Conf. on Computer Vision
and Pattern Recognition. Las Vegas: IEEE, 2016. 770–778. [doi: 10.1109/CVPR.2016.90]
[42] Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai XH, Unterthiner T, Dehghani M, Minderer M, Heigold G, Gelly S,
Uszkoreit J, Houlsby N. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv:2010.11929, 2021.
[43] Devlin J, Chang MW, Lee K, Toutanova K. BERT: Pre-training of deep bidirectional Transformers for language understanding.
arXiv:1810.04805, 2019.
附中文参考文献:
[4] 陈跃鹤, 谈川源, 陈文亮, 贾永辉, 何正球. 结合多重嵌入表示的中文知识图谱补全. 中文信息学报, 2023, 37(1): 54–63. [doi:
10.3969/j.issn.1003-0077.2023.01.005] 专业会员,
[11] 张宁豫, 谢辛, 陈想, 邓淑敏, 叶宏彬, 陈华钧. 基于知识协同微调的低资源知识图谱补全方法. 软件学报, 2022, 33(10): 3531–3545.
http://www.jos.org.cn/1000-9825/6628.htm [doi: 10.13328/j.cnki.jos.006628]
[36] 陈子睿, 王鑫, 王晨旭, 张少伟, 闫浩宇. 面向时间感知的知识超图链接预测. 软件学报, 2023, 34(10): 4533–4547. http://www.jos.org.
cn/1000-9825/6888.htm [doi: 10.13328/j.cnki.jos.006888]
[37] 庞俊, 刘小琪, 谷峪, 王鑫, 赵宇海, 张晓龙, 于戈. 基于多粒度注意力网络的知识超图链接预测. 软件学报, 2023, 34(3): 1259–1276.
http://www.jos.org.cn/1000-9825/6788.htm [doi: 10.13328/j.cnki.jos.006788]
陈强(1999-), 男, 硕士生, 主要研究领域为自然 李寿山(1980-), 男, 博士, 教授, CCF 专业会员,
语言处理. 主要研究领域为自然语言处理.
张栋(1991-), 男, 博士, 副教授, CCF 周国栋(1967-), 男, 博士, 教授, 博士生导师,
主要研究领域为自然语言处理. CCF 杰出会员, 主要研究领域为自然语言处理.