Page 197 - 《软件学报》2025年第4期
P. 197

陈强 等: 融合任务知识的多模态知识图谱补全                                                          1603


                     Conf. on Knowledge Discovery & Data Mining. Anchorage: ACM, 2019. 793–803. [doi: 10.1145/3292500.3330961]
                 [31]  Nickel  M,  Rosasco  L,  Poggio  T.  Holographic  embeddings  of  knowledge  graphs.  In:  Proc.  of  the  30th  AAAI  Conf.  on  Artificial
                     Intelligence. Phoenix: AAAI, 2016. 1955–1961. [doi: 10.1609/aaai.v30i1.10314]
                 [32]  Toutanova K, Chen DQ, Pantel P, Poon H, Choudhury P, Gamon M. Representing text for joint embedding of text and knowledge bases.
                     In: Proc. of the 2015 Conf. on Empirical Methods in Natural Language Processing. Lisbon: Association for Computational Linguistics,
                     2015. 1499–1509. [doi: 10.18653/v1/D15-1174]
                 [33]  Xie RB, Liu ZY, Luan HB, Sun MS. Image-embodied knowledge representation learning. arXiv:1609.07028, 2017.
                 [34]  Kingma DP, Ba J. Adam: A method for stochastic optimization. arXiv:1412.6980, 2017.
                 [35]  Hinton  GE,  Srivastava  N,  Krizhevsky  A,  Sutskever  I,  Salakhutdinov  RR.  Improving  neural  networks  by  preventing  co-adaptation  of
                     feature detectors. arXiv:1207.0580, 2012.
                 [36]  Chen  ZR,  Wang  X,  Wang  CX,  Zhang  SW,  Yan  HY.  Towards  time-aware  knowledge  hypergraph  link  prediction.  Ruan  Jian  Xue
                     Bao/Journal of Software, 2023, 34(10): 4533–4547 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/6888.htm [doi:
                     10.13328/j.cnki.jos.006888]
                 [37]  Pang J, Liu XQ, Gu Y, Wang X, Zhao YH, Zhang XL, Yu G. Knowledge hypergraph link prediction based on multi-granular attention
                     network. Ruan Jian Xue Bao/Journal of Software, 2023, 34(3): 1259–1276 (in Chinese with English abstract). http://www.jos.org.cn/1000-
                     9825/6788.htm [doi: 10.13328/j.cnki.jos.006788]
                 [38]  Li  LH,  Yatskar  M,  Yin  D,  Hsieh  CJ,  Chang  KW.  VisualBERT:  A  simple  and  performant  baseline  for  vision  and  language.
                     arXiv:1908.03557, 2019.
                 [39]  Lu JS, Batra D, Parikh D, Lee S. ViLBERT: Pretraining task-agnostic visiolinguistic representations for vision-and-language tasks. In:
                     Proc. of the 33rd Int’l Conf. on Neural Information Processing Systems. Vancouver: Curran Associates Inc., 2019. 13–23.
                 [40]  Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556, 2015.
                 [41]  He KM, Zhang XY, Ren SQ, Sun J. Deep residual learning for image recognition. In: Proc. of the 2016 IEEE Conf. on Computer Vision
                     and Pattern Recognition. Las Vegas: IEEE, 2016. 770–778. [doi: 10.1109/CVPR.2016.90]
                 [42]  Dosovitskiy  A,  Beyer  L,  Kolesnikov  A,  Weissenborn  D,  Zhai  XH,  Unterthiner  T,  Dehghani  M,  Minderer  M,  Heigold  G,  Gelly  S,
                     Uszkoreit J, Houlsby N. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv:2010.11929, 2021.
                 [43]  Devlin  J,  Chang  MW,  Lee  K,  Toutanova  K.  BERT:  Pre-training  of  deep  bidirectional  Transformers  for  language  understanding.
                     arXiv:1810.04805, 2019.

                 附中文参考文献:
                  [4]  陈跃鹤, 谈川源, 陈文亮, 贾永辉, 何正球. 结合多重嵌入表示的中文知识图谱补全. 中文信息学报, 2023, 37(1): 54–63. [doi:
                     10.3969/j.issn.1003-0077.2023.01.005] 专业会员,
                 [11]  张宁豫, 谢辛, 陈想, 邓淑敏, 叶宏彬, 陈华钧. 基于知识协同微调的低资源知识图谱补全方法. 软件学报, 2022, 33(10): 3531–3545.
                     http://www.jos.org.cn/1000-9825/6628.htm [doi: 10.13328/j.cnki.jos.006628]
                 [36]  陈子睿, 王鑫, 王晨旭, 张少伟, 闫浩宇. 面向时间感知的知识超图链接预测. 软件学报, 2023, 34(10): 4533–4547. http://www.jos.org.
                     cn/1000-9825/6888.htm [doi: 10.13328/j.cnki.jos.006888]
                 [37]  庞俊, 刘小琪, 谷峪, 王鑫, 赵宇海, 张晓龙, 于戈. 基于多粒度注意力网络的知识超图链接预测. 软件学报, 2023, 34(3): 1259–1276.
                     http://www.jos.org.cn/1000-9825/6788.htm [doi: 10.13328/j.cnki.jos.006788]

                             陈强(1999-), 男, 硕士生, 主要研究领域为自然                 李寿山(1980-), 男, 博士, 教授, CCF  专业会员,
                            语言处理.                                        主要研究领域为自然语言处理.




                             张栋(1991-), 男, 博士, 副教授, CCF                   周国栋(1967-), 男, 博士, 教授, 博士生导师,

                            主要研究领域为自然语言处理.                               CCF  杰出会员, 主要研究领域为自然语言处理.
   192   193   194   195   196   197   198   199   200   201   202