Page 86 - 《软件学报》2024年第4期
P. 86

1664                                                       软件学报  2024 年第 35 卷第 4 期

         4    结   论

             本文最新提出并研究了主动学习的源域无关开集域自适应,  在不额外引入训练数据和模型参数的约束
         下,  解决了严格隐私保护场景下的域差异和新的开放类别出现的问题.  本文提出了基于局部多样性选择的局
         部一致性主动学习算法(LCAL),  通过挑选阈值模糊样本,  有效地促进了开放类和公共类样本的分离. LCAL对
         不同类型的样本施加不同的损失,  使得模型对将主动标记样本匹配纠正后的可信开放类样本更不确定,  对可
         信公共类样本更确定,  从而进一步促进这两部分样本的分离.  3 个公开基准数据集上的大量实验证明了 LCAL
         的有效性,  以及主动学习的源域无关开集域自适应的可行性.


         References:
          [1]    He KM, Zhang XY, Ren SQ, et al. Deep residual learning for image recoginition. In: Proc. of the IEEE/CVF Conf. on Computer
             Vision and Pattern Recognition (CVPR). Las Vegas: IEEE Computer Society, 2016. 770−778.
          [2]    Huang G, Liu Z, Laurens VDM, et al. Densely connected convolutional networks. In: Proc. of the IEEE/CVF Conf. on Computer
             Vision and Pattern Recognition (CVPR). Honolulu: IEEE Computer Society, 2017. 4700−4708.
          [3]    Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. Communications of the
             ACM, 2017, 60(6): 84−90.
          [4]    Torralba A, Efros AA. Unbiased look at dataset bias. In: Proc. of the IEEE/CVF Conf. on Computer Vision and Pattern Recognition
             (CVPR). Colorado: IEEE Computer Society, 2011. 1521−1528.
          [5]    Saenko  K,  Kulis  B,  Fritz  M,  et  al. Adapting  visual category models to new  domains. In:  Proc. of the  11th European  Conf.  on
             Computer Vision (Computer Vision-ECCV 2010). Grete: Springer, 2010. 213−226.
          [6]    Inoue N, Furuta R, Yamasaki T, et al. Cross-Domain weakly-supervised object detection through progressive domain adaptation. In:
             Proc. of the IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR). Salt Lake City: IEEE Computer Society, 2018.
             5001−5009.
          [7]    Hsu HK, Yao CH, Tsai YH, et al. Progressive domain adaptation for object detection. In: Proc. of the Winter Conf. on Applications
             of Computer Vision (WACV). Snowmass Village: IEEE, 2020. 738−746.
          [8]    Gopalan R, Li R, Chellappa R. Domain adaptation for object recognition: An unsupervised approach. In: Proc. of the IEEE/CVF
             Int’l Conf. on Computer Vision (ICCV). Barcelona: IEEE Computer Society, 2011. 999−1006.
          [9]    Tsai YH, Hung WC, Schulter S, et al. Learning to adapt structured output space for semantic segmentation. In: Proc. of the IEEE/
             CVF Conf. on Computer Vision and Pattern Recognition (CVPR). Salt Lake City: IEEE Computer Society, 2018. 7472−7481.
         [10]    Zhang YF, Niu SC, Qiu Z, et al. COVID-DA: Deep domain adaptation from typical pneumonia to COVID-19. arXiv:2005.01577,
             2020.
         [11]    Xu GX, Liu C, Liu J, et al. Cross-site severity assessment of COVID-19 from CT images via domain adaptation. IEEE Trans. on
             Medical Imaging, 2022, 41(1): 88−102.
         [12]    Kundu JN, Venkat N, Revanur A, et al. Towards inheritable models for open-set domain adaptation. In: Proc. of the IEEE/CVF
             Conf. on Computer Vision and Pattern Recognition (CVPR). Seattle: IEEE Computer Society, 2020. 12376−12385.
         [13]    Liang J, Hu DP, Feng JS, et al. UMAD: Universal model adaptation under domain and category shift. arXiv:2112.08553, 2021.
         [14]    Luo YD, Wang ZJ, Chen ZX, et al. Source-free progressive graph learning for open-set domain adaptation. arXiv:2202.06174, 2022.
         [15]    Feng  ZY, Xu C, Tao DC. Open-set hypothesis transfer with semantic consistency.  IEEE Trans.  on Image Processing,  2021,  30:
             6473−6484.
         [16]    Su JC, Tsai YH,  Sohn  K,  et  al. Active adversarial domain adaptation. In:  Proc. of the  IEEE Winter  Conf.  on Applications of
             Computer Vision (WACV). Snowmass Village: IEEE, 2020. 739−748.
         [17]    Fu B, Cao ZJ,  Wang JM,  et  al. Transferable query selection for active domain adaptation. In:  Proc. of the  IEEE/CVF  Conf.  on
             Computer Vision and Pattern Recognition (CVPR). Virtual: IEEE Computer Society, 2021. 7272−7281.
         [18]    Mathelin A, Deheeger F, Mougeot M, et al. Discrepancy-Based active learning for domain adaptation. In: Proc. of the Int’l Conf. on
             Learning Representations (ICLR). Virtual: Openreview.net, 2021.
         [19]    Dhananjaya MM, Kumar VR, Yogamani S. Weather and light level classification for autonomous driving: Dataset, baseline and
             active learning. In: Proc. of the IEEE Int’l Intelligent Transportation Systems Conf. (ITSC). Indianapolis: IEEE, 2021. 2816−2821.
         [20]    Riccardi G, Hakkani-Tur D. Active learning: Theory and applications to automatic speech recognition. IEEE Trans. on Speech and
             Audio Processing, 2005, 13(4), 504−511.
   81   82   83   84   85   86   87   88   89   90   91