Page 89 - 《软件学报》2024年第4期
P. 89

软件学报 ISSN 1000-9825, CODEN RUXUEW                                        E-mail: jos@iscas.ac.cn
         Journal of Software,2024,35(4):1667−1681 [doi: 10.13328/j.cnki.jos.007009]   http://www.jos.org.cn
         ©中国科学院软件研究所版权所有.                                                          Tel: +86-10-62562563


                                                        ∗
         面向开集识别的稳健测试时适应方法

                       1
                               1
                                      2
               1
         周   植 ,    张丁楚 ,    李宇峰 ,    张敏灵
         1 (计算机软件新技术国家重点实验室(南京大学),  江苏  南京  210023)
         2 (东南大学  计算机科学与工程学院,  江苏  南京  210096)
         通信作者:  李宇峰, E-mail: liyf@nju.edu.cn

         摘   要:  开集识别旨在研究测试阶段突现未见类别对于机器学习模型的挑战,  以期学习模型既能分类已见类别又
         可识别/拒绝未见类别,  是确保机器学习模型能够在开放世界中高效稳健部署的重要技术.  既有开集识别技术通常
         假设已见类别的协变量分布在训练与测试阶段维持不变.  然而在实际场景中,  类别的协变量分布常不断变化.  直
         接利用既有技术不再奏效,  其性能甚至劣于基线方案.  因此,  亟需研究新型开集识别方法,  使其能不断适应协变
         量分布偏移,  以期模型在测试阶段既能稳健分类已见类别又可识别未见类别.  将此新问题设置命名为开放世界适
         应问题(AOW),  并提出了一种开放测试时适应方法(OTA).  该方法基于无标注测试数据优化自适应熵损失与开集
         熵损失更新模型,  维持对已见类的既有判别能力,  同时增强了识别未见类的能力.  大量实验分析表明,  该方法在
         多组基准数据集、多组不同协变量偏移程度下均稳健地优于现有先进的开集识别方法.
         关键词:  开集识别;  测试时适应;  分布偏移;  图像识别;  流数据
         中图法分类号: TP18


         中文引用格式:  周植,  张丁楚,  李宇峰,  张敏灵.  面向开集识别的稳健测试时适应方法.  软件学报,  2024,  35(4):  1667–1681.
         http://www.jos.org.cn/1000-9825/7009.htm
         英文引用格式:  Zhou Z, Zhang DC, Li YF, Zhang ML. Towards Robust Test-time Adaptation Method for Open-set Recognition.
         Ruan Jian Xue Bao/Journal of Software, 2024, 35(4): 1667−1681 (in Chinese). http://www.jos.org.cn/1000-9825/7009.htm
         Towards Robust Test-time Adaptation Method for Open-set Recognition

                 1
                                                           2
         ZHOU Zhi , ZHANG Ding-Chu , LI Yu-Feng , ZHANG Min-Ling
                                 1
                                            1
         1 (State Key Laboratory for Novel Software Technology (Nanjing University), Nanjing 210023, China)
         2 (School of Computer Science and Engineering, Southeast University, Nanjing 210096, China)
         Abstract: Open-set recognition is an important issue for ensuring the efficient and robust deployment of machine learning models in the
         open world. It aims to address the challenge of encountering samples from unseen classes that emerge during testing, i.e., to accurately
         classify the seen classes while identifying and rejecting the unseen ones. Current open-set recognition studies assume that the covariate
         distribution  of the  seen  classes  remains constant  during  both  training and  testing. However, in  practical  scenarios,  the  covariate
         distribution is constantly shifting, which can cause previous methods to fail, and their performance may even be worse than the baseline
         method.  Therefore, it is  urgent to  study  novel open-set  recognition  methods  that can  adapt  to the  constantly changing  covariate
         distribution so that they can robustly classify seen categories and identify unseen categories during testing. This novel problem adaptation
         in the open world (AOW)  is  named  and  a test-time  adaptation method  is  proposed  for  open-set recognition called open-set test-time
         adaptation (OTA). OTA method only utilizes unlabeled test data to update the model with adaptive entropy loss and open-set entropy loss,
         maintaining the  model’s ability to  discriminate seen  classes  while further  enhancing  its ability  to  recognize unseen classes.

            ∗  基金项目:  科技创新 2030—“新一代人工智能”重大项目(2022ZD0114803);  国家自然科学基金(62176118)
             本文由“绿色低碳机器学习研究与应用”专题特约编辑封举富教授、俞扬教授、刘淇教授推荐.
             周植和张丁楚为共同第一作者.
             收稿时间:    2023-05-11;  修改时间: 2023-07-07;  采用时间: 2023-08-24; jos 在线出版时间: 2023-09-11
             CNKI 网络首发时间: 2023-11-24
   84   85   86   87   88   89   90   91   92   93   94