Page 334 - 《软件学报》2024年第4期
P. 334

1912                                                       软件学报  2024  年第  35  卷第  4  期


                 [74]  Chen SH, Fu Y. Progressively guided alternate refinement network for RGB-D salient object detection. In: Proc. of the 16th European
                     Conf. on Computer Vision (ECCV). Glasgow: Springer, 2020. 520–538. [doi: 10.1007/978-3-030-58598-3_31]
                 [75]  Ji  W,  Li  JJ,  Zhang  M,  Piao  YR,  Lu  HC.  Accurate  RGB-D  salient  object  detection  via  collaborative  learning.  In:  Proc.  of  the  16th
                     European Conf. on Computer Vision (ECCV). Glasgow: Springer, 2020. 52–69. [doi: 10.1007/978-3-030-58523-5_4]
                 [76]  Liu ZY, Wang Y, Tu ZZ, Xiao Y, Tang B. TriTransNet: RGB-D salient object detection with a triplet transformer embedding network.
                     In: Proc. of the 29th ACM Int’l Conf. on Multimedia (ACM). ACM, 2021. 4481–4490. [doi: 10.1145/3474085.3475601]
                 [77]  Zhao XQ, Zhang LH, Pang YW, Lu HC, Zhang L. A single stream network for robust and real-time RGB-D salient object detection. In:
                     Proc. of the 16th European Conf. on Computer Vision (ECCV). Glasgow: Springer, 2020. 646–662. [doi: 10.1007/978-3-030-58542-
                     6_39]
                 [78]  Fan DP, Gong C, Cao Y, Ren B, Cheng MM, Borji A. Enhanced-alignment measure for binary foreground map evaluation. In: Proc. of
                     the 27th Int’l Joint Conf. on Artificial Intelligence (IJCAI). Stockholm: AAAI, 2018. 698–704.
                 [79]  Fan DP, Cheng MM, Liu Y, Li T, Borji A. Structure-measure: A new way to evaluate foreground maps. In: Proc. of the 2017 IEEE Int’l
                     Conf. on Computer Vision (ICCV). Venice: IEEE, 2017. 4558–4567. [doi: 10.1109/ICCV.2017.487]
                 [80]  Achanta R, Hemami S, Estrada F, Susstrunk S. Frequency-tuned salient region detection. In: Proc. of the 2009 IEEE Conf. on Computer
                     Vision and Pattern Recognition (CVPR). Miami: IEEE, 2009. 1597–1604. [doi: 10.1109/CVPR.2009.5206596]
                 [81]  Perazzi F, Krähenbühl P, Pritch Y, Hornung A. Saliency filters: Contrast based filtering for salient region detection. In: Proc. of the 2012
                     IEEE  Conf.  on  Computer  Vision  and  Pattern  Recognition  (CVPR).  Providence:  IEEE,  2012.  733 –740.  [doi:  10.1109/CVPR.2012.
                     6247743]
                 [82]  Kingma DP, Ba J. Adam: A method for stochastic optimization. In: Proc. of the 3rd Int’l Conf. on Learning Representations (ICLR). San
                     Diego: ICLR, 2015. 1–13.
                 [83]  Zhang  M,  Ren  WS,  Piao  YR,  Rong  ZK,  Lu  HC.  Select,  supplement  and  focus  for  RGB-D  saliency  detection.  In:  Proc.  of  the  2020
                     IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR). Seattle: IEEE, 2020. 3469–3478. [doi: 10.1109/CVPR42600.
                     2020.00353]
                 [84]  Zhang M, Fei SX, Liu J, Xu S, Piao YR, Lu HC. Asymmetric two-stream architecture for accurate RGB-D saliency detection. In: Proc. of
                     the 16th European Conf. on Computer Vision (ECCV). Glasgow: Springer, 2020. 374–390. [doi: 10.1007/978-3-030-58604-1_23]
                 [85]  Wu JY, Sun FM, Xu R, Meng J, Wang FS. Aggregate interactive learning for RGB-D salient object detection. Expert Systems with
                     Applications, 2022, 195: 116614. [doi: 10.1016/j.eswa.2022.116614]
                 [86]  Huang NC, Yang Y, Zhang DW, Zhang Q, Han JG. Employing bilinear fusion and saliency prior information for RGB-D salient object
                     detection. IEEE Trans. on Multimedia, 2022, 24: 1651–1664. [doi: 10.1109/TMM.2021.3069297]
                 [87]  Jin WD, Xu J, Han Q, Zhang Y, Cheng MM. CDNet: Complementary depth network for RGB-D salient object detection. IEEE Trans. on
                     Image Processing, 2021, 30: 3376–3390. [doi: 10.1109/TIP.2021.3060167]
                 [88]  Li GY, Liu Z, Chen MY, Bai Z, Lin WS, Ling HB. Hierarchical alternate interaction network for RGB-D salient object detection. IEEE
                     Trans. on Image Processing, 2021, 30: 3528–3542. [doi: 10.1109/TIP.2021.3062689]
                 [89]  Sun P, Zhang WH, Wang HY, Li SY, Li X. Deep RGB-D saliency detection with depth-sensitive attention and automatic multi-modal
                     fusion. In: Proc. of the 2021 IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR). Nashville: IEEE, 2021. 1407–1417.
                     [doi: 10.1109/CVPR46437.2021.00146]
                 [90]  Ji W, Li JJ, Yu S, Zhang M, Piao YR, Yao SY, Bi Q, Ma K, Zheng YF, Lu HC, Cheng L. Calibrated RGB-D salient object detection. In:
                     Proc. of the 2021 IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR). Nashville: IEEE, 2021. 9466–9476. [doi: 10.
                     1109/CVPR46437.2021.00935]
                 [91]  Woo S, Park J, Lee JY, Kweon IS. CBAM: Convolutional block attention module. In: Proc. of the 15th European Conf. on Computer
                     Vision (ECCV). Munich: Springer, 2018. 3–19. [doi: 10.1007/978-3-030-01234-2_1]

                 附中文参考文献:
                 [39]  王文冠, 沈建冰, 贾云得. 视觉注意力检测综述. 软件学报, 2019, 30(2): 416–439. http://www.jos.org.cn/1000-9825/5636.htm [doi: 10.
                     13328/j.cnki.jos.005636]
   329   330   331   332   333   334   335   336   337   338   339