Page 334 - 《软件学报》2024年第4期
P. 334
1912 软件学报 2024 年第 35 卷第 4 期
[74] Chen SH, Fu Y. Progressively guided alternate refinement network for RGB-D salient object detection. In: Proc. of the 16th European
Conf. on Computer Vision (ECCV). Glasgow: Springer, 2020. 520–538. [doi: 10.1007/978-3-030-58598-3_31]
[75] Ji W, Li JJ, Zhang M, Piao YR, Lu HC. Accurate RGB-D salient object detection via collaborative learning. In: Proc. of the 16th
European Conf. on Computer Vision (ECCV). Glasgow: Springer, 2020. 52–69. [doi: 10.1007/978-3-030-58523-5_4]
[76] Liu ZY, Wang Y, Tu ZZ, Xiao Y, Tang B. TriTransNet: RGB-D salient object detection with a triplet transformer embedding network.
In: Proc. of the 29th ACM Int’l Conf. on Multimedia (ACM). ACM, 2021. 4481–4490. [doi: 10.1145/3474085.3475601]
[77] Zhao XQ, Zhang LH, Pang YW, Lu HC, Zhang L. A single stream network for robust and real-time RGB-D salient object detection. In:
Proc. of the 16th European Conf. on Computer Vision (ECCV). Glasgow: Springer, 2020. 646–662. [doi: 10.1007/978-3-030-58542-
6_39]
[78] Fan DP, Gong C, Cao Y, Ren B, Cheng MM, Borji A. Enhanced-alignment measure for binary foreground map evaluation. In: Proc. of
the 27th Int’l Joint Conf. on Artificial Intelligence (IJCAI). Stockholm: AAAI, 2018. 698–704.
[79] Fan DP, Cheng MM, Liu Y, Li T, Borji A. Structure-measure: A new way to evaluate foreground maps. In: Proc. of the 2017 IEEE Int’l
Conf. on Computer Vision (ICCV). Venice: IEEE, 2017. 4558–4567. [doi: 10.1109/ICCV.2017.487]
[80] Achanta R, Hemami S, Estrada F, Susstrunk S. Frequency-tuned salient region detection. In: Proc. of the 2009 IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR). Miami: IEEE, 2009. 1597–1604. [doi: 10.1109/CVPR.2009.5206596]
[81] Perazzi F, Krähenbühl P, Pritch Y, Hornung A. Saliency filters: Contrast based filtering for salient region detection. In: Proc. of the 2012
IEEE Conf. on Computer Vision and Pattern Recognition (CVPR). Providence: IEEE, 2012. 733 –740. [doi: 10.1109/CVPR.2012.
6247743]
[82] Kingma DP, Ba J. Adam: A method for stochastic optimization. In: Proc. of the 3rd Int’l Conf. on Learning Representations (ICLR). San
Diego: ICLR, 2015. 1–13.
[83] Zhang M, Ren WS, Piao YR, Rong ZK, Lu HC. Select, supplement and focus for RGB-D saliency detection. In: Proc. of the 2020
IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR). Seattle: IEEE, 2020. 3469–3478. [doi: 10.1109/CVPR42600.
2020.00353]
[84] Zhang M, Fei SX, Liu J, Xu S, Piao YR, Lu HC. Asymmetric two-stream architecture for accurate RGB-D saliency detection. In: Proc. of
the 16th European Conf. on Computer Vision (ECCV). Glasgow: Springer, 2020. 374–390. [doi: 10.1007/978-3-030-58604-1_23]
[85] Wu JY, Sun FM, Xu R, Meng J, Wang FS. Aggregate interactive learning for RGB-D salient object detection. Expert Systems with
Applications, 2022, 195: 116614. [doi: 10.1016/j.eswa.2022.116614]
[86] Huang NC, Yang Y, Zhang DW, Zhang Q, Han JG. Employing bilinear fusion and saliency prior information for RGB-D salient object
detection. IEEE Trans. on Multimedia, 2022, 24: 1651–1664. [doi: 10.1109/TMM.2021.3069297]
[87] Jin WD, Xu J, Han Q, Zhang Y, Cheng MM. CDNet: Complementary depth network for RGB-D salient object detection. IEEE Trans. on
Image Processing, 2021, 30: 3376–3390. [doi: 10.1109/TIP.2021.3060167]
[88] Li GY, Liu Z, Chen MY, Bai Z, Lin WS, Ling HB. Hierarchical alternate interaction network for RGB-D salient object detection. IEEE
Trans. on Image Processing, 2021, 30: 3528–3542. [doi: 10.1109/TIP.2021.3062689]
[89] Sun P, Zhang WH, Wang HY, Li SY, Li X. Deep RGB-D saliency detection with depth-sensitive attention and automatic multi-modal
fusion. In: Proc. of the 2021 IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR). Nashville: IEEE, 2021. 1407–1417.
[doi: 10.1109/CVPR46437.2021.00146]
[90] Ji W, Li JJ, Yu S, Zhang M, Piao YR, Yao SY, Bi Q, Ma K, Zheng YF, Lu HC, Cheng L. Calibrated RGB-D salient object detection. In:
Proc. of the 2021 IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR). Nashville: IEEE, 2021. 9466–9476. [doi: 10.
1109/CVPR46437.2021.00935]
[91] Woo S, Park J, Lee JY, Kweon IS. CBAM: Convolutional block attention module. In: Proc. of the 15th European Conf. on Computer
Vision (ECCV). Munich: Springer, 2018. 3–19. [doi: 10.1007/978-3-030-01234-2_1]
附中文参考文献:
[39] 王文冠, 沈建冰, 贾云得. 视觉注意力检测综述. 软件学报, 2019, 30(2): 416–439. http://www.jos.org.cn/1000-9825/5636.htm [doi: 10.
13328/j.cnki.jos.005636]