Page 331 - 《软件学报》2024年第4期
P. 331

孙福明 等: 跨模态交互融合与全局感知的            RGB-D  显著性目标检测                                  1909


                     Intelligence, 2018, 40(1): 20–33. [doi: 10.1109/TPAMI.2017.2662005]
                  [6]  Cheng MM, Zhang FL, Mitra NJ, Huang XL, Hu SM. RepFinder: Finding approximately repeated scene elements for image editing.
                     ACM Trans. on Graphics, 2010, 29(4): 83. [doi: 10.1145/1778765.1778820]
                  [7]  Fan DP, Wang WG, Cheng MM, Shen JB. Shifting more attention to video salient object detection. In: Proc. of the 2019 IEEE/CVF Conf.
                     on Computer Vision and Pattern Recognition (CVPR). Long Beach: IEEE, 2019. 8546–8556. [doi: 10.1109/CVPR.2019.00875]
                  [8]  Yan PX, Li GB, Xie Y, Li Z, Wang C, Chen TS, Lin L. Semi-supervised video salient object detection using pseudo-labels. In: Proc. of
                     the 2019 IEEE/CVF Int’l Conf. on Computer Vision (ICCV). Seoul: IEEE, 2019. 7283–7292. [doi: 10.1109/ICCV.2019.00738]
                  [9]  Wang YB, Wang FS, Wang C, Sun FM, He JJ. Learning saliency-aware correlation filters for visual tracking. The Computer Journal,
                     2022, 65(7): 1846–1859. [doi: 10.1093/comjnl/bxab026]
                 [10]  Zhou ZK, Pei WJ, Li X, Wang HP, Zheng F, He ZY. Saliency-associated object tracking. In: Proc. of the 2021 IEEE/CVF Int’l Conf. on
                     Computer Vision (ICCV). Montreal: IEEE, 2021. 9846–9855. [doi: 10.1109/ICCV48922.2021.00972]
                 [11]  Liu JJ, Hou QB, Cheng MM, Feng JS, Jiang JM. A simple pooling-based design for real-time salient object detection. In: Proc. of the
                     2019 IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR). Long Beach: IEEE, 2019. 3912–3921. [doi: 10.1109/CVPR.
                     2019.00404]
                 [12]  Wang LZ, Wang LJ, Lu HC, Zhang PP, Ruan X. Salient object detection with recurrent fully convolutional networks. IEEE Trans. on
                     Pattern Analysis and Machine Intelligence, 2019, 41(7): 1734–1746. [doi: 10.1109/TPAMI.2018.2846598]
                 [13]  Cheng MM, Mitra NJ, Huang XL, Torr PHS, Hu SM. Global contrast based salient region detection. IEEE Trans. on Pattern Analysis and
                     Machine Intelligence, 2015, 37(3): 569–582. [doi: 10.1109/TPAMI.2014.2345401]
                 [14]  Zhang DW, Meng DY, Han JW. Co-saliency detection via a self-paced multiple-instance learning framework. IEEE Trans. on Pattern
                     Analysis and Machine Intelligence, 2017, 39(5): 865–878. [doi: 10.1109/TPAMI.2016.2567393]
                 [15]  Chen  H,  Li  YF.  Three-stream  attention-aware  network  for  RGB-D  salient  object  detection.  IEEE  Trans.  on  Image  Processing,  2019,
                     28(6): 2825–2835. [doi: 10.1109/TIP.2019.2891104]
                 [16]  Piao YR, Ji W, Li JJ, Zhang M, Lu HC. Depth-induced multi-scale recurrent attention network for saliency detection. In: Proc. of the
                     2019 IEEE/CVF Int’l Conf. on Computer Vision (ICCV). Seoul: IEEE, 2019. 7253–7262. [doi: 10.1109/ICCV.2019.00735]
                 [17]  Giancola S, Valenti M, Sala R. State-of-the-art devices Comparison. In: Giancola S, Valenti M, Sala R, eds. A Survey on 3D Cameras:
                     Metrological Comparison of Time-of-flight, Structured-light and Active Stereoscopy Technologies. Cham: Springer, 2018. 29–39. [doi:
                     10.1007/978-3-319-91761-0_3]
                 [18]  Li NY, Ye JW, Ji Y, Ling HB, Yu JY. Saliency detection on light field. In: Proc. of the 2014 IEEE Conf. on Computer Vision and Pattern
                     Recognition (CVPR). Columbus: IEEE, 2014. 2806–2813. [doi: 10.1109/CVPR.2014.359]
                 [19]  Zhao JX, Cao Y, Fan DP, Cheng MM, Li XY, Zhang L. Contrast prior and fluid pyramid integration for RGBD salient object detection.
                     In: Proc. of the 2019 IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR). Long Beach: IEEE, 2019. 3922–3931. [doi:
                     10.1109/CVPR.2019.00405]
                 [20]  Cong RM, Lei JJ, Fu HZ, Huang QM, Cao XC, Ling N. HSCS: Hierarchical sparsity based co-saliency detection for RGBD images. IEEE
                     Trans. on Multimedia, 2019, 21(7): 1660–1671. [doi: 10.1109/TMM.2018.2884481]
                 [21]  Peng HW, Li B, Xiong WH, Hu WM, Ji RR. RGBD salient object detection: A benchmark and algorithms. In: Proc. of the 13th European
                     Conf. on Computer Vision (ECCV). Zurich: Springer, 2014. 92–109. [doi: 10.1007/978-3-319-10578-9_7]
                 [22]  Zhu CB, Cai X, Huang K, Li TH, Li G. PDNet: Prior-model guided depth-enhanced network for salient object detection. In: Proc. of the
                     2019 IEEE Int’l Conf. on Multimedia and Expo (ICME). Shanghai: IEEE, 2019. 199–204. [doi: 10.1109/ICME.2019.00042]
                 [23]  Fan DP, Zhai YJ, Borji A, Yang JF, Shao L. BBS-Net: RGB-D salient object detection with a bifurcated backbone strategy network. In:
                     Proc. of the 16th European Conf. on Computer Vision (ECCV). Glasgow: Springer, 2020. 275–292. [doi: 10.1007/978-3-030-58610-
                     2_17]
                 [24]  Zhang PP, Wang D, Lu HC, Wang HY, Ruan X. Amulet: Aggregating multi-level convolutional features for salient object detection. In:
                     Proc. of the 2017 IEEE Int’l Conf. on Computer Vision (ICCV). Venice: IEEE, 2017. 202–211. [doi: 10.1109/ICCV.2017.31]
                 [25]  Hou QB, Cheng MM, Hu XW, Borji A, Tu ZW, Torr PHS. Deeply supervised salient object detection with short connections. In: Proc. of
                     the 2017 IEEE Conf. on Computer Vision and Pattern Recognition (CVPR). Honolulu: IEEE, 2017. 5300–5309. [doi: 10.1109/CVPR.
                     2017.563]
                 [26]  Wang TT, Zhang LH, Wang S, Lu HC, Yang G, Ruan X, Borji A. Detect globally, refine locally: A novel approach to saliency detection.
                     In: Proc. of the 2018 IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR). Salt Lake City: IEEE, 2018. 3127–3135.
                     [doi: 10.1109/CVPR.2018.00330]
                 [27]  Chen  LC,  Papandreou  G,  Kokkinos  I,  Murphy  K,  Yuille  AL.  DeepLab:  Semantic  image  segmentation  with  deep  convolutional  nets,
   326   327   328   329   330   331   332   333   334   335   336