Page 103 - 《软件学报》2024年第4期
P. 103
周植 等: 面向开集识别的稳健测试时适应方法 1681
[37] Shanmugam D, Blalock D, Balakrishnan G, et al. Better aggregation in test-time augmentation. In: Proc. of the 2021 IEEE/CVF
Int’l Conf. on Computer Vision (ICCV). 2021. 1214−1223. [doi: 10.1109/ICCV48922.2021.00125]
[38] Phung VH, Rhee EJ. A high-accuracy model average ensemble of convolutional neural networks for classification of cloud image
patches on small datasets. Applied Sciences, 2019, 9(21): 4500. [doi: 10.3390/app9214500]
[39] Zhou ZH. Ensemble Learning. Springer, 2021.
[40] Saito K, Saenko K. OVANet: One-vs-all network for universal domain adaptation. In: Proc. of the 2021 IEEE/CVF Int’l Conf. on
Computer Vision (ICCV). 2021. 8980−8989. [doi: 10.1109/ICCV48922.2021.00887]
[41] Hendrycks D, Dietterich T. Benchmarking neural network robustness to common corruptions and perturbations. In: Proc. of the 7th
Int’l Conf. on Learning Representations. 2019.
[42] Hendrycks D, Gimpel K. A baseline for detecting misclassified and out-of-distribution examples in neural networks. In: Proc. of the
5th Int’l Conf. on Learning Representations. 2017.
[43] Chen G, Qiao L, Shi Y, et al. Learning open set network with discriminative reciprocal points. In: Proc. of the European Conf. on
Computer Vision (ECCV). 2020. 507−522. [doi: 10.1007/978-3-030-58580-8_30]
[44] He K, Zhang X, Ren S, et al. Identity mappings in deep residual networks. In: Proc. of the European Conf. on Computer Vision
(ECCV). 2016. 630–645. [doi: 10.1007/978-3-319-46493-0_38]
[45] Dhamija AR, Günther M, Boult T. Reducing network agnostophobia. In: Advances in Neural Information Processing Systems. 2018.
9175−9186.
附中文参考文献:
[4] 窦文, 王怀民, 贾焰, 等. 构造基于推荐的 Peer-to-Peer 环境下的 Trust 模型. 软件学报, 2004, 15(4): 571−583. http://www.jos.
org.cn/1000-9825/15/571.htm
[6] 朱鹏飞, 张琬迎, 王煜, 等. 考虑多粒度类相关性的对比式开放集识别方法. 软件学报, 2022, 33(4): 1156−1169. https://www.
jos.org.cn/1000-9825/6468.htm [doi: 10.13328/j.cnki.jos.006468]
周植(1998-), 男, 博士生, CCF 学生会 李宇峰(1983-), 男, 博士, 教授, 博士
员, 主要研究领域为机器学习, 数据挖 生导师, CCF 杰出会员, 主要研究领域为
掘, 分布外泛化, 测试时适应. 机器学习, 数据挖掘, 半监督学习与弱监
督学习, 统计学习与优化及其应用.
张丁楚(2001-), 男, 硕士生, CCF 学生 张敏灵(1979-), 男, 博士, 教授, 博士
会员, 主要研究领域为机器学习, 数据挖 生导师, CCF 杰出会员, 主要研究领域为
掘, 测试时适应. 人工智能, 机器学习, 数据挖掘.