Page 101 - 《软件学报》2024年第4期
P. 101

周植  等:  面向开集识别的稳健测试时适应方法                                                         1679


         行时间.  表 4 中的结果表明: OTA 算法的运行时间与基线算法、测试时适应算法的运行时间接近,  并没有数量
         级上的差异;  但相对于基线方法与对比方法能够有效地提升性能表现.  因此,  表 4 中的结果说明了 OTA 方法
         能在测试阶段以较低的资源使模型适于协变量分布变化,  避免了重新训练模型的资源开销与数据收集成本.

                                            表 4    算法的运行时间
                                   算法名称     MLS   Tent   LAME   CoTTA   OTA
                                  运行时间(s)   4.96   11.77   22.21   329.07   44.21
                                   OSCR (%)   55.96   30.29   51.33   28.00   64.21

         5    总   结
             开集识别是机器学习的重要问题之一,  其旨在准确分类已见类别的同时,  识别并拒绝未见类别.  然而,  现
         有开集识别方法在面对协变量分布偏移的问题时,  面临严重的性能下降问题,  其性能表现甚至不如基线方法.
         基于这一观察,  本文提出了开放世界适应问题 AOW,  旨在使开集识别模型稳健地分类已见类别并拒绝未见类
         别的同时,  还不断更新模型使其适应于变化的协变量分布.  针对此问题,  我们设计了开放测试时适应方法
         OTA.  该方法利用自适应熵损失和开放熵损失在测试时自适应地更新模型.  一方面,  它消除了未见类样本在
         更新过程中对已见类判别能力的不利影响;  另一方面,  它利用未见类样本加强了模型对未见类别的识别能力.
         此外,  OTA 方法还利用了参数正则化损失,  以防止模型在更新过程中出现灾难性的遗忘问题.  在不同偏移程
         度的基准数据集上的实验,  验证了 OTA 方法相比已有的开集识别方法和测试时适应方法具有更先进的性能.

         References:
          [1]    Deng J, Dong W, Socher R, et al. Imagenet: A large-scale hierarchical image database. In: Proc. of the 2009 IEEE/CVF Conf. on
             Computer Vision and Pattern Recognition (CVPR). 2009. 248−255. [doi: 10.1109/CVPR.2009.5206848]
          [2]    Reddy DR. Speech recognition by machine: A review. Proc. of the IEEE, 1976, 64(4): 501−531. [doi: 10.1109/PROC.1976.10158]
          [3]    Stahlberg F. Neural machine translation: A review. Journal of Artificial Intelligence Research, 2020, 69: 343−418. [doi: 10.1613/
             jair.1.12007]
          [4]    Dou W, Wang HM, Jia Y, et al. A recommendation-based peer-to-peer trust model. Ruan Jian Xue Bao/Journal of Software, 2004,
             15(4): 571−583 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/15/571.htm
          [5]    Neal L, Olson M, Fern X, et al. Open set learning with counterfactual images. In: Proc. of the European Conf. on Computer Vision
             (ECCV). 2018. 613−628. [doi: 10.1007/978-3-030-01231-1\_38]
          [6]    Zhu PF, Zhang WY, Wang Y, et al. Multi-granularity inter-class correlation based contrastive learning for open set recognition.
             Ruan Jian Xue Bao/Journal of Software, 2022, 33(4): 1156−1169 (in Chinese with English abstract). https://www.jos.org.cn/1000-
             9825/6468.htm [doi: 10.13328/j.cnki. jos.006468]
          [7]    Zhou Z, Guo LZ, Cheng ZZ, et al. STEP: Out-of-distribution detection in the presence of limited in-distribution labeled data. In:
             Advances in Neural Information Processing Systems. 2021. 29168−29180.
          [8]    Zhou DW, Yang Y, Zhan DC. Learning to classify  with incremental new class. IEEE Trans. on Neural Networks and Learning
             Systems, 2021, 33(6): 2429−2443. [doi: 10.1109/TNNLS.2021.3104882]
          [9]    Guo LZ, Zhang ZY, Jiang Y, et al. Safe deep semi-supervised learning for unseen-class unlabeled data. In: Proc. of the 37th Int’l
             Conf. on Machine Learning. 2020. 3897−3906.
         [10]    Wong K, Wang S, Ren M, et al. Identifying unknown instances for autonomous driving. In: Proc. of the Conf. on Robot Learning.
             2020. 384−393.
         [11]    Geng C,  Huang  S,  Chen S. Recent advances in open  set  recognition:  A  survey.  IEEE Trans  on Pattern Analysis and  Machine
             Intelligence, 2020, 43(10): 3614−3631. [doi: 10.1109/TPAMI.2020.2981604]
         [12]    Zhu YN, Li YF. Semi-supervised streaming learning with emerging new labels. In: Proc.  of the 34th AAAI Conf. on Artificial
             Intelligence. 2020. 7015−7022. [doi: 10.1609/aaai.v34i04.6186]
         [13]    Vaze S, Han K, Vedaldi A, et al. Open-set recognition: A good closed-set classifier is all you need? In: Proc. of the 10th Int’l Conf.
             on Learning Representations. 2022.
   96   97   98   99   100   101   102   103   104   105   106