Page 102 - 《软件学报》2024年第4期
P. 102

1680                                                       软件学报  2024 年第 35 卷第 4 期

         [14]    Bendale A, Boult TE. Towards open set deep networks. In: Proc. of the 2016 IEEE/CVF Conf. on Computer Vision and Pattern
             Recognition (CVPR). 2016. 1563−1572. [doi: 10.1109/CVPR.2016.173]
         [15]    Zhou DW, Ye HJ, Zhan DC. Learning placeholders for open-set recognition. In: Proc. of the 2021 IEEE/CVF Conf. on Computer
             Vision and Pattern Recognition (CVPR). 2021. 4401−4410. [doi: 10.1109/CVPR46437.2021.00438]
         [16]    Chen G, Peng P, Wang X, et al. Adversarial reciprocal points learning for open set recognition. IEEE Trans. on Pattern Analysis
             and Machine Intelligence, 2022, 44(11): 8065−8081. [doi: 10.1109/TPAMI.2021.3106743]
         [17]    Sun X,  Yang Z,  Zhang C,  et  al. Conditional  Gaussian distribution  learning for open set recognition. In: Proc. of the 2020
             IEEE/CVF Conf.  on Computer Vision and Pattern Recognition (CVPR).  2020.  13480−13489. [doi:  10.1109/CVPR42600.2020.
             01349]
         [18]    Geng C,  Chen S. Collective decision for open set recognition. IEEE  Trans.  on Knowledge and Data Engineering,  2020, 34(1):
             192−204. [doi: 10.1109/TKDE.2020.2978199]
         [19]    Shao JJ, Guo LZ, Yang XW, et al. LOG: Active model adaptation for label-efficient ood generalization. In: Advances in Neural
             Information Processing Systems. 2022.
         [20]    Guo LZ, Zhou Z, Li YF. RECORD: Resource constrained semi-supervised learning under distribution shift. In: Proc. of the 26th
             ACM SIGKDD Int’l Conf. on Knowledge Discovery and Data Mining. 2020. 1636−1644. [doi: 10.1145/3394486.3403214]
         [21]    Wang D, Shelhamer E, Liu S, et al. Tent: Fully test-time adaptation by entropy minimization. In: Proc. of the 8th Int’l Conf. on
             Learning Representations. 2020.
         [22]    Niu S, Wu J, Zhang Y, et al. Efficient test-time model adaptation without forgetting. In: Proc. of the 39th Int’l Conf. on Machine
             Learning. 2022. 16888−16905.
         [23]    Bartler A, Bühler A, Wiewel F, et al. MT3: Meta test-time training for self-supervised test-time adaption. In: Proc. of the 25th Int’l
             Conf. on Artificial Intelligence and Statistics. 2022. 3080−3090.
         [24]    Wang Q, Fink O, Van Gool L, et al. Continual test-time domain adaptation. In: Proc. of the 2022 IEEE/CVF Conf. on Computer
             Vision and Pattern Recognition (CVPR). 2022. 7191−7201. [doi: 10.1109/CVPR52688.2022.00706]
         [25]    Boudiaf  M,  Mueller R,  Ayed  IB,  et  al. Parameter-free  online  test-time adaptation. In: Proc.  of the 2022 IEEE/CVF Conf. on
             Computer Vision and Pattern Recognition (CVPR). 2022. 8334−8343. [doi: 10.1109/CVPR52688.2022.00816]
         [26]    Niu S,  Wu J,  Zhang Y,  et  al.  Towards  stable  test-time adaptation in  dynamic wild  world.  In: Proc. of the 11th Int’l Conf.  on
             Learning Representations. 2023.
         [27]    Gong T,  Jeong J,  Kim T,  et  al. Robust continual test-time adaptation: instance-aware bn and  prediction-balanced memory.  In:
             Advances in Neural Information Processing Systems. 2022.
         [28]    Scheirer WJ, De Rezende Rocha A, Sapkota A, et al. Toward open set recognition. IEEE Trans. on Pattern Analysis and Machine
             Intelligence, 2012, 35(7): 1757−1772. [doi: 10.1109/TPAMI.2012.256]
         [29]    Jain LP, Scheirer WJ, Boult TE. Multi-class open set recognition using probability of inclusion. In: Proc. of the European Conf. on
             Computer Vision (ECCV). 2014. 393−409. [doi: 10.1007/978-3-319-10578-9\_26]
         [30]    Ge Z, Demyanov S, Chen Z, et al. Generative openmax for multi-class open set classification. In: Proc. of the British Machine
             Vision Conf. 2017.
         [31]    Oza  P,  Patel VM. C2ae:  Class  conditioned auto-encoder for open-set recognition. In: Proc. of the 2019 IEEE/CVF Conf. on
             Computer Vision and Pattern Recognition (CVPR). 2019. 2307−2316. [doi: 10.1109/CVPR.2019.00241]
         [32]    Shao JJ, Yang XW, Guo LZ. Open-set learning under covariate shift. Machine Learning, 2022. [doi: 10.1007/s10994-022-06237-1]
         [33]    Sun Y, Wang X, Liu Z, et al. Test-time training with self-supervision for generalization under distribution shifts. In: Proc. of the
             37th Int’l Conf. on Machine Learning. 2020. 9229−9248.
         [34]    Liu Y, Kothari P, Van Delft B, et al. TTT++: When does self-supervised test-time training fail or thrive? In: Advances in Neural
             Information Processing Systems. 2021. 21808−21820.
         [35]    Schneider S, Rusak E, Eck L, et al. Improving robustness against common corruptions by covariate shift adaptation. In: Advances
             in Neural Information Processing Systems. 2020. 11539−11551.
         [36]    Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: Proc. of the
             32nd Int’l Conf. on Machine Learning. 2015. 448−456.
   97   98   99   100   101   102   103   104   105   106   107