Page 130 - 《软件学报》2021年第10期
P. 130
3102 Journal of Software 软件学报 Vol.32, No.10, October 2021
[29] Xu X, Ding SF, Sun TF, Liao HM. Large-scale density peaks clustering algorithm based on grid screening. Journal of Computer
Research and Development, 2018,55(11):24192429 (in Chinese with English abstract). [doi: 10.7544/issn1000-1239.2018.
20170227]
[30] Chu YH, Wang HJ, Yang Y, Li TR. Clustering ensemble based on density peaks. Acta Automatica Sinica, 2016,42(9):14011412
(in Chinese with English abstract). [doi: 10.16383/j.aas.2016.c150864]
[31] Capo M, Perez A, Lozano JA. An efficient approximation to the K-means clustering for massive data. Knowledge-based Systems,
2017,117:5669. [doi: 10.1016/j.knosys.2016.06.031]
[32] Zhang G, Zhang CC, Zhang HY. Improved K-means algorithm based on density Canopy. Knowledge-based Systems, 2018,145:
289297. [doi: 10.1016/j.knosys.2018.01.031]
[33] Jiang F, Liu GZ, Du JW, Sui YF. Initialization of K-modes clustering using outlier detection techniques. Information Sciences,
2016,332:167183. [doi: 10.1016/j.ins.2015.11.005]
[34] Ismkhan H. I-k-Means−+: An iterative clustering algorithm based on an enhanced version of the k-means. Pattern Recognition,
2018,79:402413. [doi: 10.1016/j.patcog.2018.02.015]
[35] Yoder J, Priebe CE. Semi-supervised K-means++. Journal of Statistical Computation and Simulation, 2017,87(13):25972608. [doi:
10.1080/00949655.2017.1327588]
[36] Zhu EZ, Ma RH. An effective partitional clustering algorithm based on new clustering validity index. Applied Soft Computing,
2018,71:608621. [doi: 10.1016/j.asoc.2018.07.026]
[37] Zhou GB, Wu JX, Zhou H. Clustering method based on nearest neighbours representation. Ruan Jian Xue Bao/Journal of Software,
2015,26(11):28472855 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/4895.htm [doi: 10.13328/j.cnki.jos.
004895]
[38] Ahmed BS, Rachid H, Sebti FF. Cluster validity index based on Jeffrey divergence. Pattern Analysis and Applications, 2017,20(1):
2131. [doi: 10.1007/s10044-015-0453-7]
[39] Yue SH, Wang JP, Wang J, Bao XJ. A new validity index for evaluating the clustering results by partitional clustering algorithms.
Soft Computing, 2016,20(3):11271138. [doi: 10.1007/s00500-014-1577-1]
[40] Lin PL, Huang PW, Li CY. A validity index method for clusters with different degrees of dispersion and overlap. In: Proc. of the
8th Int’l Conf. on Advanced Computational Intelligence. New York: IEEE, 2016. 222229. [doi: 10.1109/ICACI.2016.7449829]
[41] Yang SL, Li KS, Liang ZP, Li W, Xue Y. A novel cluster validity index for fuzzy C-means algorithm. Soft Computing, 2016,22(6):
19211931. [doi: 10.1007/s00500-016-2453-y]
[42] Huang XH, Wang C, Xiong LY, Zeng H. A weighting k-means clustering approach by integrating intra-cluster and inter-cluster
distances. Chinese Journal of Computers, 2019,42(12):28362848 (in Chinese with English abstract). [doi: 10.11897/SP.J.1016.
2019.02836]
[43] Starczewski A. A new validity index for crisp clusters. Pattern Analysis and Applications, 2017,20(3):687700. [doi: 10.1007/
s10044-015-0525-8]
[44] Zhao QP, FräNti P. WB-index: A sum-of-squares based index for cluster validity. Data and Knowledge Engineering, 2014,92:
7789. [doi: 10.1016/j.datak.2014.07.008]
[45] Zhang YX. Research on determining optimal number of clusters in cluster analysis [MS. Thesis]. Hefei: Anhui University, 2020 (in
Chinese with English abstract).
附中文参考文献:
[1] 孙吉贵,刘杰,赵连宇.聚类算法研究.软件学报,2008,19(1):4861. http://www.jos.org.cn/1000-9825/19/48.htm [doi: 10.3724/SP.J.
1001.2008.00048]
[10] 杨燕,靳蕃,Mohamed K.聚类有效性评价综述.计算机应用研究,2008,25(6):16301632.
[26] 谢娟英,高红超,谢维信.K 近邻优化的密度峰值快速搜索聚类算法.中国科学:信息科学,2016,46(2):258280. [doi: 10.1360/
N112015-00135]
[27] 纪霞,姚晟,赵鹏.相对邻域与剪枝策略优化的密度峰值聚类算法.自动化学报,2020,46(3):114. [doi: 10.16383/j.aas.c170612]