Page 130 - 《软件学报》2021年第10期
P. 130

3102                                 Journal of Software  软件学报 Vol.32, No.10, October 2021

                [29]    Xu X, Ding SF, Sun TF, Liao HM. Large-scale density peaks clustering algorithm based on grid screening. Journal of Computer
                     Research and Development,  2018,55(11):24192429  (in  Chinese with English  abstract). [doi: 10.7544/issn1000-1239.2018.
                     20170227]
                [30]    Chu YH, Wang HJ, Yang Y, Li TR. Clustering ensemble based on density peaks. Acta Automatica Sinica, 2016,42(9):14011412
                     (in Chinese with English abstract). [doi: 10.16383/j.aas.2016.c150864]
                [31]    Capo M, Perez A, Lozano JA. An efficient approximation to the K-means clustering for massive data. Knowledge-based Systems,
                     2017,117:5669. [doi: 10.1016/j.knosys.2016.06.031]
                [32]    Zhang G, Zhang CC, Zhang HY. Improved K-means algorithm based on density Canopy. Knowledge-based Systems, 2018,145:
                     289297. [doi: 10.1016/j.knosys.2018.01.031]
                [33]    Jiang F,  Liu GZ,  Du JW, Sui YF. Initialization of K-modes  clustering using outlier detection techniques. Information Sciences,
                     2016,332:167183. [doi: 10.1016/j.ins.2015.11.005]
                [34]    Ismkhan H.  I-k-Means−+: An iterative clustering algorithm  based  on an enhanced  version of the  k-means. Pattern Recognition,
                     2018,79:402413. [doi: 10.1016/j.patcog.2018.02.015]
                [35]    Yoder J, Priebe CE. Semi-supervised K-means++. Journal of Statistical Computation and Simulation, 2017,87(13):25972608. [doi:
                     10.1080/00949655.2017.1327588]
                [36]    Zhu EZ, Ma RH. An effective partitional clustering algorithm based on new clustering validity index. Applied Soft Computing,
                     2018,71:608621. [doi: 10.1016/j.asoc.2018.07.026]
                [37]    Zhou GB, Wu JX, Zhou H. Clustering method based on nearest neighbours representation. Ruan Jian Xue Bao/Journal of Software,
                     2015,26(11):28472855  (in Chinese with English abstract).  http://www.jos.org.cn/1000-9825/4895.htm  [doi:  10.13328/j.cnki.jos.
                     004895]
                [38]    Ahmed BS, Rachid H, Sebti FF. Cluster validity index based on Jeffrey divergence. Pattern Analysis and Applications, 2017,20(1):
                     2131. [doi: 10.1007/s10044-015-0453-7]
                [39]    Yue SH, Wang JP, Wang J, Bao XJ. A new validity index for evaluating the clustering results by partitional clustering algorithms.
                     Soft Computing, 2016,20(3):11271138. [doi: 10.1007/s00500-014-1577-1]
                [40]    Lin PL, Huang PW, Li CY. A validity index method for clusters with different degrees of dispersion and overlap. In: Proc. of the
                     8th Int’l Conf. on Advanced Computational Intelligence. New York: IEEE, 2016. 222229. [doi: 10.1109/ICACI.2016.7449829]
                [41]    Yang SL, Li KS, Liang ZP, Li W, Xue Y. A novel cluster validity index for fuzzy C-means algorithm. Soft Computing, 2016,22(6):
                     19211931. [doi: 10.1007/s00500-016-2453-y]
                [42]    Huang XH, Wang C, Xiong LY, Zeng H. A weighting k-means clustering approach by integrating intra-cluster and inter-cluster
                     distances.  Chinese Journal of  Computers, 2019,42(12):28362848  (in Chinese with English  abstract). [doi:  10.11897/SP.J.1016.
                     2019.02836]
                [43]    Starczewski A. A new  validity  index  for crisp clusters.  Pattern  Analysis and Applications, 2017,20(3):687700. [doi: 10.1007/
                     s10044-015-0525-8]
                [44]    Zhao QP,  FräNti P. WB-index:  A  sum-of-squares  based index  for cluster  validity. Data and  Knowledge Engineering,  2014,92:
                     7789. [doi: 10.1016/j.datak.2014.07.008]
                [45]     Zhang YX. Research on determining optimal number of clusters in cluster analysis [MS. Thesis]. Hefei: Anhui University, 2020 (in
                     Chinese with English abstract).
                 附中文参考文献:
                  [1]  孙吉贵,刘杰,赵连宇.聚类算法研究.软件学报,2008,19(1):4861. http://www.jos.org.cn/1000-9825/19/48.htm  [doi: 10.3724/SP.J.
                     1001.2008.00048]
                 [10]  杨燕,靳蕃,Mohamed K.聚类有效性评价综述.计算机应用研究,2008,25(6):16301632.
                 [26]  谢娟英,高红超,谢维信.K 近邻优化的密度峰值快速搜索聚类算法.中国科学:信息科学,2016,46(2):258280. [doi: 10.1360/
                     N112015-00135]
                 [27]  纪霞,姚晟,赵鹏.相对邻域与剪枝策略优化的密度峰值聚类算法.自动化学报,2020,46(3):114. [doi: 10.16383/j.aas.c170612]
   125   126   127   128   129   130   131   132   133   134   135