Page 129 - 《软件学报》2021年第10期
P. 129

朱二周  等:一种采用新型聚类方法的最佳类簇数确定算法                                                     3101


                 [8]    Rathore P, Ghafoori Z, C. Bezdek JC, Palaniswami M, Leckie C. Approximating Dunn’s cluster validity indices for partitions of
                     big data. IEEE Trans. on Cybernetics, 2019,49(5):16291641. [doi: 10.1109/TCYB.2018.2806886]
                 [9]    Zhang  YJ, Wang WN, Zhang XN, Li Y. A cluster  validity  index  for fuzzy clustering. Information  Sciences,  2008,178(4):
                     12051218. [doi: 10.1016/j.ins.2007.10.004]
                [10]    Yang Y, Jin F, Mohamed K. Survey of clustering validity evaluation. Application Research of Computers, 2008,25(6):16301632
                     (in Chinese with English abstract).
                [11]    Calinski T,  Harabasz JA.  A dendrite  method for  cluster  analysis.  Communications in Statistics, 1974,3(1):127. [doi: 10.1080/
                     03610927408827101]
                [12]    Gurrutxag I, Albisua I, Arbelaitz O, Martin JI, Muguerza J, Perez JM, Perona I. SEP/COP: An efficient method to find the best
                     partition in hierarchical clustering based on a new cluster validity index. Pattern Recognition, 2010,43(10):33643373. [doi: 10.
                     1016/j.patcog.2010.04.021]
                [13]    Davies DL, Bouldin DW. A cluster  separation measure.  IEEE Trans.  on  Pattern Analysis and Machine Intelligence,  1979,
                     PAMI-1(2):224227. [doi: 10.1109/TPAMI.1979.4766909]
                [14]    Dunn JC. A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. Journal of Cybernetics,
                     1973,3(3):3257. [doi: 10.1080/01969727308546046]
                [15]    Bandyopadhyay S, Maulik U. Nonparametric genetic clustering: comparison of validity indices. IEEE Trans. on Systems, Man, and
                     Cybernetics, Part C (Applications and Reviews), 2001,31(1):120125. [doi: 10.1109/5326.923275]
                [16]    Zhu EZ, Zhang YX,  Wen  P, Liu  F.  Fast and  stable clustering analysis based  on  grid-mapping  K-means algorithm and  new
                     clustering validity index. Neurocomputing, 2019,363:149170. [doi: 10.1016/j.neucom.2019.07.048]
                [17]    Zhu  XF, Zhang  SC, Li YG,  Zhang JL,  Yang LF,  Fang Y. Low-rank  sparse  subspace  for spectral clustering.  IEEE Trans.  on
                     Knowledge and Data Engineering, 2019,31(8):15321543. [doi: 10.1109/TKDE.2018.2858782]
                [18]    Chen YW, Tang  SY, Bouguila N,  Wang C,  Du  JX, Li HL. A  fast clustering algorithm  based  on  pruning  unnecessary  distance
                     computations in DBSCAN for high-dimensional data. Pattern Recognition, 2018,83:375387. [doi: 10.1016/j.patcog.2018.05.030]
                [19]    Bezdek JC, Ehrlich R, Full W. FCM: The fuzzy C-means clustering algorithm. Computers & Geosciences, 1984,10(2-3):191203.
                     [doi: 10.1016/0098-3004(84)90020-7]
                [20]    Qian PJ, Zhao KF, Jiang YZ, Su KH, Deng ZH, Wang ST, Jr RFM. Knowledge-leveraged transfer fuzzy C-means for texture image
                     segmentation with self-adaptive cluster prototype matching. Knowledge-based Systems, 2017,130:3350. [doi: 10.1016/j.knosys.
                     2017.05.018]
                [21]    Arora N,  Pandey R. Noise adaptive  FCM algorithm for  segmentation  of  MRI  brain images  using local and  non-local  spatial
                     information. In: Mohamed BH, ed. Proc. of the 15th Int’l Conf. on Intelligent Systems Design and Applications. New York: IEEE,
                     2015. 610617. [doi: 10.1109/ISDA.2015.7489187]
                [22]    Jia HJ, Ding  SF, Xu XZ, Nie R. The  latest  research progress  on  spectral clustering. Neural Computing & Applications,  2014,
                     24(7-8):14771486. [doi: 10.1007/s00521-013-1439-2]
                [23]    Li Y, Liu XY. A modified spectral clustering algorithm based on density. In: Zu Q, Hu B, eds. Proc. of the 2nd Int’l Conf. on
                     Human Centered Computing. Berlin: Springer-Verlag, 2016. 901906. [doi: 10.1007/978-3-319-31854-7_97]
                [24]    Airel PS, José Fco. MT, Jesús A.  CO,  et  al. A  new  overlapping clustering algorithm based  on  graph theory.  In: Batyrshin  I,
                     González Mendoza M, eds. Proc. of the 11th Mexican Int’l Conf. on Artificial Intelligence. Berlin: Springer-Verlag, 2012. 6172.
                     [doi: 10.1007/978-3-642-37807-2_6]
                [25]    Rodriguez A, Laio A. Clustering  by fast search and  find  of  density  peaks.  Science,  2014,344(6191):14921496. [doi: 10.1126/
                     science.1242072]
                [26]    Xie YJ,  Gao  HC, Xie  WX. Fast peak density search  clustering  algorithm based on the  optimization of  K-nearest neighbor.
                     SCIENTIA SINICA Informations, 2016,46(2):258280 (in Chinese with English abstract). [doi: 10.1360/N112015-00135]
                [27]    Ji X, Yao S, Zhao P. Relative neighborhood and pruning strategy optimized density peaks clustering algorithm. Acta Automatica
                     Sinica, 2020,46(3):114 (in Chinese with English abstract). [doi: 10.16383/j.aas.c170612]
                [28]    Ma CL, Shan H, Ma T. Improved density peaks based clustering algorithm with strategy choosing clustering center automatically.
                     Computer Science, 2016,43(7):255258 (in Chinese with English abstract). [doi: 10.11896/j.issn.1002-137X.2016.7.046]
   124   125   126   127   128   129   130   131   132   133   134