Page 125 - 《软件学报》2021年第8期
P. 125

龚成  等:一种超低损失的深度神经网络量化压缩方法                                                       2407


                [47]    Yan Q, Xu L, Shi J, Jia J. Hierarchical saliency detection. In: Proc. of the CVPR. IEEE Computer Society, 2013. 1155−1162.
                [48]    Wang L, Lu H, Wang Y, Feng M, Wang D, Yin B, Ruan X. Learning to detect salient objects with image-level supervision. In: Proc.
                     of the CVPR. IEEE Computer Society, 2017. 3796−3805. [doi: 10.1109/CVPR.2017.404]
                [49]    Movahedi V, Elder JH. Design and perceptual validation of performance measures for salient object segmentation. In: Proc. of the
                     CVPR. IEEE Computer Society, 2010. 49−56. [doi: 10.1109/CVPRW.2010.5543739]
                [50]    Cheng  M, Mitra NJ,  Huang X,  Hu  S.  Salientshape: Group  saliency in  image collections. The Visual Computer,  2014,30(4):
                     443−453.
                [51]    Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for biomedical image segmentation. In: Navab N, et al., eds.
                     Proc. of the MICCAI. Cham: Springer-Verlag, 2015. 234−241. [doi: 10.1007/978-3-319-24574-4_ 28]
                [52]    Chaurasia A, Culurciello E. Linknet: Exploiting encoder representations for efficient semantic segmentation. In: Proc. of the VCIP.
                     IEEE, 2017. 1−4. [doi: 10.1109/VCIP.2017.8305148]
                [53]    Zhou Z, Siddiquee MMR, Tajbakhsh N, Liang J. Unet++: A nested u-net architecture for medical image segmentation. In: Stoyanov
                     D, Taylor Z, eds. Proc. of the MICCAI. Cham: Springer-Verlag, 2018. 3−11. [doi: 10.1007/978-3-030-00889-5_1]
                [54]    Perazzi F, Krähenbühl P, Pritch Y, Alex, Hornung E. Saliency filters: Contrast based filtering for salient region detection. In: Proc.
                     of the ICCV. IEEE, 2012. 733−740. [doi: 10.1109/CVPR.2012.6247743]
                [55]    Achanta R, Hemami S, Estrada F, Susstrunk S. Frequency-Tuned salient region detection. In: Proc. of the CVPR. IEEE Computer
                     Society, 2009. 1597−1604. [doi: 10.1109/CVPR.2009.5206596]
                [56]    Fan D, Cheng M, Liu Y, Li T, Borji A. Structure-Measure: A new way to evaluate foreground maps. In: Proc. of the ICCV.    IEEE
                     Computer Society, 2017. 4558−4567. [doi: 10.1109/ICCV.2017.487]
                [57]    Fan D, Gong C, Cao Y, Ren B, Cheng M, Borji A. Enhanced-Alignment measure for binary foreground map evaluation. In: Lang J,
                     ed. Proc. of the PIJCAI. Stockholm, 2018. 698−704. [doi: 10.24963/ijcai.2018/97]

                 附中文参考文献:
                  [1]  彭亚丽,张鲁,张钰,刘侍刚,郭敏.基于深度反卷积神经网络的图像超分辨率算法.软件学报,2018,29(4):926−934. http://www.
                     jos.org.cn/1000-9825/5407.htm [doi: 10.13328/j.cnki.jos.005407]
                  [2]  葛道辉,李洪升,张亮,刘如意,沈沛意,苗启广.轻量级神经网络架构综述.软件学报,2020,31(9):2627−2653. http://www.jos.org.cn/
                     1000-9825/5942.htm [doi: 10.13328/j.cnki.jos.005942]
                 [14]  雷杰,高鑫,宋杰,王兴路,宋明黎.深度网络模型压缩综述.软件学报,2018,29(2):251−266. http://www.jos.org.cn/1000-9825/5428.
                     htm [doi: 10.13328/j.cnki.jos.005428]


                              龚成(1993-),男,博士生,CCF 学生会员,                    刘方鑫(1996-),男,硕士,主要研究领域为
                              主要研究领域为神经网络压缩,高性能嵌                           神经网络压缩,异构计算,人工智能.
                              入式系统,异构计算,人工智能.



                              卢冶(1986-),男,博士,副教授,CCF 专业                    陈新伟(1984-),男,博士,副教授,主要研
                              会员,主要研究领域为神经网络压缩,高性                          究领域为机器人控制技术,工业视觉系统,
                              能嵌入式系统,异构计算,人工智能.                            移动机器人系统.




                              代素蓉(1997-),女,硕士生,CCF 学生会                     李涛(1977-),男,博士,教授,博士生导师,
                              员,主要研究领域为神经网络压缩,机器学                          CCF 杰出会员,主要研究领域为异构计算,
                              习,异构计算.                                      机器学习,物联网.
   120   121   122   123   124   125   126   127   128   129   130