Page 125 - 《软件学报》2021年第8期
P. 125
龚成 等:一种超低损失的深度神经网络量化压缩方法 2407
[47] Yan Q, Xu L, Shi J, Jia J. Hierarchical saliency detection. In: Proc. of the CVPR. IEEE Computer Society, 2013. 1155−1162.
[48] Wang L, Lu H, Wang Y, Feng M, Wang D, Yin B, Ruan X. Learning to detect salient objects with image-level supervision. In: Proc.
of the CVPR. IEEE Computer Society, 2017. 3796−3805. [doi: 10.1109/CVPR.2017.404]
[49] Movahedi V, Elder JH. Design and perceptual validation of performance measures for salient object segmentation. In: Proc. of the
CVPR. IEEE Computer Society, 2010. 49−56. [doi: 10.1109/CVPRW.2010.5543739]
[50] Cheng M, Mitra NJ, Huang X, Hu S. Salientshape: Group saliency in image collections. The Visual Computer, 2014,30(4):
443−453.
[51] Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for biomedical image segmentation. In: Navab N, et al., eds.
Proc. of the MICCAI. Cham: Springer-Verlag, 2015. 234−241. [doi: 10.1007/978-3-319-24574-4_ 28]
[52] Chaurasia A, Culurciello E. Linknet: Exploiting encoder representations for efficient semantic segmentation. In: Proc. of the VCIP.
IEEE, 2017. 1−4. [doi: 10.1109/VCIP.2017.8305148]
[53] Zhou Z, Siddiquee MMR, Tajbakhsh N, Liang J. Unet++: A nested u-net architecture for medical image segmentation. In: Stoyanov
D, Taylor Z, eds. Proc. of the MICCAI. Cham: Springer-Verlag, 2018. 3−11. [doi: 10.1007/978-3-030-00889-5_1]
[54] Perazzi F, Krähenbühl P, Pritch Y, Alex, Hornung E. Saliency filters: Contrast based filtering for salient region detection. In: Proc.
of the ICCV. IEEE, 2012. 733−740. [doi: 10.1109/CVPR.2012.6247743]
[55] Achanta R, Hemami S, Estrada F, Susstrunk S. Frequency-Tuned salient region detection. In: Proc. of the CVPR. IEEE Computer
Society, 2009. 1597−1604. [doi: 10.1109/CVPR.2009.5206596]
[56] Fan D, Cheng M, Liu Y, Li T, Borji A. Structure-Measure: A new way to evaluate foreground maps. In: Proc. of the ICCV. IEEE
Computer Society, 2017. 4558−4567. [doi: 10.1109/ICCV.2017.487]
[57] Fan D, Gong C, Cao Y, Ren B, Cheng M, Borji A. Enhanced-Alignment measure for binary foreground map evaluation. In: Lang J,
ed. Proc. of the PIJCAI. Stockholm, 2018. 698−704. [doi: 10.24963/ijcai.2018/97]
附中文参考文献:
[1] 彭亚丽,张鲁,张钰,刘侍刚,郭敏.基于深度反卷积神经网络的图像超分辨率算法.软件学报,2018,29(4):926−934. http://www.
jos.org.cn/1000-9825/5407.htm [doi: 10.13328/j.cnki.jos.005407]
[2] 葛道辉,李洪升,张亮,刘如意,沈沛意,苗启广.轻量级神经网络架构综述.软件学报,2020,31(9):2627−2653. http://www.jos.org.cn/
1000-9825/5942.htm [doi: 10.13328/j.cnki.jos.005942]
[14] 雷杰,高鑫,宋杰,王兴路,宋明黎.深度网络模型压缩综述.软件学报,2018,29(2):251−266. http://www.jos.org.cn/1000-9825/5428.
htm [doi: 10.13328/j.cnki.jos.005428]
龚成(1993-),男,博士生,CCF 学生会员, 刘方鑫(1996-),男,硕士,主要研究领域为
主要研究领域为神经网络压缩,高性能嵌 神经网络压缩,异构计算,人工智能.
入式系统,异构计算,人工智能.
卢冶(1986-),男,博士,副教授,CCF 专业 陈新伟(1984-),男,博士,副教授,主要研
会员,主要研究领域为神经网络压缩,高性 究领域为机器人控制技术,工业视觉系统,
能嵌入式系统,异构计算,人工智能. 移动机器人系统.
代素蓉(1997-),女,硕士生,CCF 学生会 李涛(1977-),男,博士,教授,博士生导师,
员,主要研究领域为神经网络压缩,机器学 CCF 杰出会员,主要研究领域为异构计算,
习,异构计算. 机器学习,物联网.