Page 124 - 《软件学报》2021年第8期
P. 124

2406                                   Journal of Software  软件学报 Vol.32, No.8,  August 2021

                [22]    Jacob B, Kligys S, Chen B, Zhu M, Tang M, Howard AG, Adam H, Kalenichenko D. Quantization and training of neural networks
                     for efficient integer-arithmetic-only inference. In: Proc. of the CVPR. Salt Lake City: IEEE Computer Society, 2018. 2704−2713.
                [23]    Jain SR, Gural A, Wu M, Dick C. Trained uniform quantization for accurate and efficient neural network inference on fixed-point
                     hardware. arXiv preprint arXiv:1903.08066, 2016.
                [24]    Bishop CM. Pattern Recognition and Machine Learning. Springer-Verlag, 2006.
                [25]    Murphy KP. Machine Learning: A Probabilistic Perspective. MIT Press, 2012.
                [26]    Zhu C, Han S, Mao H, Dally WJ. Trained ternary quantization. In: Proc. of the ICLR. 2017. https://openreview.net/pdf?id=S1_pA
                     u9xl
                [27]    Jin C, Sun H, Kimura S. Sparse ternary connect: Convolutional neural networks using ternarized weights with enhanced sparsity. In:
                     Shin Y, ed. Proc. of the ASP-DAC. IEEE, 2018. 190−195. [doi: 10.1109/ASPDAC.2018.8297304]
                [28]    Lin DD, Talathi SS, Annapureddy VS. Fixed point quantization of deep convolutional networks. In: Balcan M, Weinberger KQ, eds.
                     Proc. of the ICML. New York, 2016. 2849−2858.
                [29]    Polino A, Pascanu R, Alistarh D. Model compression via distillation and quantization. In: Proc. of the ICLR. 2018. https://openrevi
                     ew.net/pdf?id=S1XolQbRW
                [30]    Wang P, Hu Q, Zhang Y, Zhang C, Liu Y, Cheng J. Two-Step quantization for low-bit neural networks. In: Proc. of the CVPR.
                     IEEE Computer Society, 2018. 4376−4384. [doi: 10.1109/CVPR.2018.00460]
                [31]    Gong C, Li T, Lu Y, Hao C, Zhang X, Chen D, Chen Y. μL2Q: An ultra-low loss quantization method for DNN compression. In:
                     Proc. of the IJCNN. IEEE, 2019. 1−8. [doi: 10.1109/IJCNN.2019.8851699]
                [32]    Jia Y, Shelhamer E, Donahue J, Karayev S, Long J, Girshick RB, Guadarrama S, Darrell T. Caffe: Convolutional architecture for
                     fast  feature embedding.  In: Hua KA,  ed. Proc. of the 22nd ACM Int’l  Conf. on  Multimedia.  ACM, 2014. 675−678. [doi:
                     10.1145/2647868.2654889]
                [33]    Chollet F, et al. In GitHub repository. 2015. https://github.com/keras-team/keras
                [34]    Le Cun  Y,  Bottou  L,  Bengio  Y,  Haffner P.  Gradient-Based learning  applied to document recognition. Proc.  of the IEEE, 1998,
                     86(11):2278−2324. [doi: 10.1109/5.726791]
                [35]    Krizhevsky A, Hinton G. Learning multiple layers of features from tiny images. 2009. http://www.cs.toronto.edu/~kriz/learning-
                     features-2009-TR.pdf
                [36]    Deng J, Dong W, Socher R, Li L, Li K, Li F. Imagenet: A large-scale hierarchical image database. In: Proc. of the CVPR. IEEE
                     Computer Society, 2009. 248−255. [doi: 10.1109/CVPR.2009.5206848]
                [37]    Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. Communications of the
                     ACM, 2017,60(6):84−90. [doi: 10.1145/3065386]
                [38]    Sandler M, Howard A, Zhu ML, Zhmoginov A, Chen LC. Mobilenetv2: Inverted residuals and linear bottlenecks. In: Proc. of the
                     CVPR. IEEE Computer Society, 2018. 4510−4520. [doi: 10.1109/CVPR.2018.00474]
                [39]    Ghasemzadeh M, Samragh M, Koushanfar F. ReBNet: Residual binarized neural network. In: Proc. of the FCCM. IEEE Computer
                     Society, 2018. 57−64. [doi: 10.1109/FCCM.2018.00018]
                [40]    Courbariaux M, Bengio Y, David JP. Binaryconnect: Training deep neural networks with binary weights during propagations. In:
                     Proc. of the NIPS 2015. 2015. 3123−3131.
                [41]    Alemdar  H,  Leroy  V, Prost-Boucle  A, Petro F. Ternary neural networks for resource-efficient  AI  applications. In: Proc. of the
                     IJCNN. IEEE, 2017. 2547−2554. [doi: 10.1109/IJCNN.2017.7966166]
                [42]    Esser SK, Appuswamy R, Merolla P, Arthur JV, Modha DS. Backpropagation for energy-efficient neuromorphic computing. In:
                     Cortes C, Lawrence ND, Lee DD, Sugiyama M, Garnett R, eds. Proc. of the NIPS. 2015. 1117−1125.
                [43]    Leng C, Dou Z, Li H, Zhu S, Jin R. Extremely low bit neural network: squeeze the last bit out with ADMM. In: McIlraith SA,
                     Weinberger KQ, eds. Proc. of the AAAI. AAAI Press, 2018. 3466−3473.
                [44]    Lin ZH, Courbariaux  M, Memisevic R, Bengio Y. Neural  networks with few multiplications. arXiv  preprint arXiv:1510.03009,
                     2015.
                [45]    Wang  W,  Lai  Q,  Fu H, Shen  J,  Ling H. Salient object detection  in the  deep learning  era: An in-depth survey.  arXiv preprint
                     arXiv:1904.09146, 2016.
                [46]    Cheng M, Mitra NJ, Huang X, Torr PHS, Hu S. Global contrast based salient region detection. IEEE Trans. on Pattern Analysis and
                     Machine Intelligence, 2015,37(3):569−582. [doi: 10.1109/TPAMI.2014.2345401]
   119   120   121   122   123   124   125   126   127   128   129