Page 123 - 《软件学报》2021年第8期
P. 123
龚成 等:一种超低损失的深度神经网络量化压缩方法 2405
对比方法,其优秀的量化模型精度能够满足边缘计算场景中的 DNN 应用需求.
References:
[1] Peng YL, Zhang L, Zhang Y, Liu SG, Guo M. Deep deconvolution neural network for image super-resolution. Ruan Jian Xue Bao/
Journal of Software, 2018,29(4):926−934 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/5407.htm [doi: 10.
13328/j.cnki.jos.005407]
[2] Ge DH, Li HS, Zhang L, Liu RY, Shen PY, Miao QG. Survey of lightweight neural network. Ruan Jian Xue Bao/Journal of
Software, 2020,31(9):2627−2653 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/5942.htm [doi: 10.13328/j.
cnki.jos.005942]
[3] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. In: Bengio Y, Le Cun Y, eds. Proc.
of the ICLR. San Diego, 2015. [doi: 10.13328/j.cnki.jos.005428]
[4] He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proc. of the CVPR. Las Vegas: IEEE Computer
Society, 2016. 770−778. [doi: 10.1109/CVPR.2016.90]
[5] Fan DP, Wang W, Cheng MM, Shen J. Shifting more attention to video salient object detection. In: Proc. of the CVPR. Long Beach:
Computer Vision Foundation IEEE, 2019. 8554−8564. [doi: 10.1109/CVPR.2019.00875]
[6] Girshick RB. Fast R-CNN. In: Proc. of the ICCV. Santiago: IEEE Computer Society, 2015. 1440−1448. [doi: 10.1109/ICCV.2015.
169]
[7] Liu W, Anguelov D, Erhan D, Szegedy C, Reed SE, Fu CY, Berg AC. SSD: Single shot MultiBox detector. In: Proc. of the ECCV.
Cham: Springer-Verlag, 2016. 21−37. [doi: 10.1007/978-3-319-46448-0_2]
[8] Szegedy C, Ioffe S, Vanhoucke V, Alemi AA. Inception-v4, inception-ResNet and the impact of residual connections on learning.
In: Proc. of the AAAI. San Francisco: AAAI Press, 2017. 4278−4284.
[9] Fan D, Cheng M, Liu J, Gao S, Hou Q, Borji A. Salient objects in clutter: Bringing salient object detection to the foreground. In:
Proc. of the ECCV. Munich: Springer-Verlag, 2018. 196−212. [doi: 10.1007/978-3-030-01267-0_12]
[10] Noh H, Hong S, Han B. Learning deconvolution network for semantic segmentation. In: Proc. of the ICCV. Santiago: IEEE
Computer Society, 2015. 1520−1528. [doi: 10.1109/ICCV.2015.178]
[11] Pohlen T, Alex, Hermans E, Mathias M, Leibe B. Full-Resolution residual networks for semantic segmentation in street scenes. In:
Proc. of the CVPR. Honolulu: IEEE Computer Society, 2017. 3309−3318. [doi: 10.1109/CVPR.2017.353]
[12] Girshick RB, Donahue J, Darrell T, Malik J. Rich feature hierarchies for accurate object detection and semantic segmentation. In:
Proc. of the CVPR. Columbus: IEEE Computer Society, 2014. 580−587. [doi: 10.1109/CVPR.2014.81]
[13] Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proc. of the CVPR. Boston: IEEE
Computer Society, 2015. 3431−3440. [doi: 10.1109/CVPR.2015.7298965]
[14] Lei J, Gao X, Song J, Wang XL, Song ML. Survey of deep neural network model compression. Ruan Jian Xue Bao/Journal of
Software, 2018,29(2):251−266 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/5428.htm [doi: 10.13328/j.
cnki.jos.005428]
[15] Hubara I, Courbariaux M, Soudry D, El-Yaniv R, Bengio Y. Binarized neural networks. In: Lee DD, ed. Proc. of the NIPS. 2016.
4107−4115.
[16] Li F, Zhang B, Liu B. Ternary weight networks. arXiv preprint arXiv:1605.04711, 2016.
[17] Zhou S, Ni Z, Zhou X, Wen H, Wu Y, Zou Y. DoReFa-Net: Training low bitwidth convolutional neural networks with low bitwidth
gradients. arXiv preprint arXiv:1606.06160, 2016.
[18] Rastegari M, Ordonez V, Redmon J, Farhadi A. XNOR-Net: ImageNet classification using binary convolutional neural networks. In:
Leibe B, ed. Proc. of the ECCV. Springer-Verlag, 2016. 525−542. [doi: 10.1007/978-3-319-46493-0_32]
[19] Gysel P, Motamedi M, Ghiasi S. Hardware-Oriented approximation of convolutional neural networks. arXiv preprint
arXiv:1604.03168, 2016.
[20] Kim M, Smaragdis P. Bitwise neural networks. arXiv preprint arXiv:1601.06071, 2016.
[21] Han S, Mao H, Dally WJ. Deep compression: Compressing deep neural network with pruning, trained quantization and huffman
coding. In: Proc. of the ICLR. Puerto Rico, 2015.