Page 123 - 《软件学报》2021年第8期
P. 123

龚成  等:一种超低损失的深度神经网络量化压缩方法                                                       2405


                 对比方法,其优秀的量化模型精度能够满足边缘计算场景中的 DNN 应用需求.

                 References:
                 [1]    Peng YL, Zhang L, Zhang Y, Liu SG, Guo M. Deep deconvolution neural network for image super-resolution. Ruan Jian Xue Bao/
                     Journal of Software, 2018,29(4):926−934 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/5407.htm [doi: 10.
                     13328/j.cnki.jos.005407]
                 [2]    Ge DH, Li HS, Zhang L, Liu RY, Shen  PY,  Miao QG. Survey  of  lightweight  neural  network. Ruan  Jian Xue Bao/Journal of
                     Software, 2020,31(9):2627−2653 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/5942.htm [doi: 10.13328/j.
                     cnki.jos.005942]
                 [3]    Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. In: Bengio Y, Le Cun Y, eds. Proc.
                     of the ICLR. San Diego, 2015. [doi: 10.13328/j.cnki.jos.005428]
                 [4]    He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proc. of the CVPR. Las Vegas: IEEE Computer
                     Society, 2016. 770−778. [doi: 10.1109/CVPR.2016.90]
                 [5]    Fan DP, Wang W, Cheng MM, Shen J. Shifting more attention to video salient object detection. In: Proc. of the CVPR. Long Beach:
                     Computer Vision Foundation IEEE, 2019. 8554−8564. [doi: 10.1109/CVPR.2019.00875]
                 [6]    Girshick RB. Fast R-CNN. In: Proc. of the ICCV. Santiago: IEEE Computer Society, 2015. 1440−1448. [doi: 10.1109/ICCV.2015.
                     169]
                 [7]    Liu W, Anguelov D, Erhan D, Szegedy C, Reed SE, Fu CY, Berg AC. SSD: Single shot MultiBox detector. In: Proc. of the ECCV.
                     Cham: Springer-Verlag, 2016. 21−37. [doi: 10.1007/978-3-319-46448-0_2]
                 [8]    Szegedy C, Ioffe S, Vanhoucke V, Alemi AA. Inception-v4, inception-ResNet and the impact of residual connections on learning.
                     In: Proc. of the AAAI. San Francisco: AAAI Press, 2017. 4278−4284.
                 [9]    Fan D, Cheng M, Liu J, Gao S, Hou Q, Borji A. Salient objects in clutter: Bringing salient object detection to the foreground. In:
                     Proc. of the ECCV. Munich: Springer-Verlag, 2018. 196−212. [doi: 10.1007/978-3-030-01267-0_12]
                [10]    Noh H,  Hong S,  Han B.  Learning  deconvolution network for semantic segmentation. In: Proc. of  the ICCV. Santiago: IEEE
                     Computer Society, 2015. 1520−1528. [doi: 10.1109/ICCV.2015.178]
                [11]    Pohlen T, Alex, Hermans E, Mathias M, Leibe B. Full-Resolution residual networks for semantic segmentation in street scenes. In:
                     Proc. of the CVPR. Honolulu: IEEE Computer Society, 2017. 3309−3318. [doi: 10.1109/CVPR.2017.353]
                [12]    Girshick RB, Donahue J, Darrell T, Malik J. Rich feature hierarchies for accurate object detection and semantic segmentation. In:
                     Proc. of the CVPR. Columbus: IEEE Computer Society, 2014. 580−587. [doi: 10.1109/CVPR.2014.81]
                [13]    Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proc. of the CVPR. Boston: IEEE
                     Computer Society, 2015. 3431−3440. [doi: 10.1109/CVPR.2015.7298965]
                [14]    Lei J,  Gao  X, Song J, Wang XL, Song ML. Survey of deep neural network  model  compression.  Ruan Jian  Xue  Bao/Journal of
                     Software, 2018,29(2):251−266 (in  Chinese  with English abstract). http://www.jos.org.cn/1000-9825/5428.htm [doi: 10.13328/j.
                     cnki.jos.005428]
                [15]    Hubara I, Courbariaux M, Soudry D, El-Yaniv R, Bengio Y. Binarized neural networks. In: Lee DD, ed. Proc. of the NIPS. 2016.
                     4107−4115.
                [16]    Li F, Zhang B, Liu B. Ternary weight networks. arXiv preprint arXiv:1605.04711, 2016.
                [17]    Zhou S, Ni Z, Zhou X, Wen H, Wu Y, Zou Y. DoReFa-Net: Training low bitwidth convolutional neural networks with low bitwidth
                     gradients. arXiv preprint arXiv:1606.06160, 2016.
                [18]    Rastegari M, Ordonez V, Redmon J, Farhadi A. XNOR-Net: ImageNet classification using binary convolutional neural networks. In:
                     Leibe B, ed. Proc. of the ECCV. Springer-Verlag, 2016. 525−542. [doi: 10.1007/978-3-319-46493-0_32]
                [19]    Gysel P,  Motamedi M, Ghiasi S.  Hardware-Oriented  approximation of  convolutional neural networks.  arXiv preprint
                     arXiv:1604.03168, 2016.
                [20]    Kim M, Smaragdis P. Bitwise neural networks. arXiv preprint arXiv:1601.06071, 2016.
                [21]    Han S, Mao H, Dally WJ. Deep compression: Compressing deep neural network with pruning, trained quantization and huffman
                     coding. In: Proc. of the ICLR. Puerto Rico, 2015.
   118   119   120   121   122   123   124   125   126   127   128