Page 232 - 《软件学报》2021年第5期
P. 232

1456                                     Journal of Software  软件学报 Vol.32, No.5,  May 2021

                 [117]    Fang  HH,  Ai DN, Cong WJ, Yang  SY,  Zhu JJ,  Huang Y, Song  H, Wang YT,  Yang J.  Topology optimization using  multiple-
                      possibility fusion for vasculature extraction. IEEE Trans. on Circuits and Systems for Video Technology, 2020,30(2):442−456.
                 [118]    Hashimoto N, Fukushima D, Koga R, Takagi Y, Ko K, Kohno K, Nakaguro M, Nakamura S, Hontani H, Takeuchi I. Multi-scale
                      domain-adversarial multiple-instance CNN for cancer subtype classification with unannotated histopathological images. In: Proc.
                      of the IEEE Computer Society Conf. on Computer Vision and Pattern Recognition. 2020. 3852−3861.
                 [119]    Hayashida J, Nishimura K, Bise R. MPM: Joint representation of motion and position map for cell tracking. In: Proc. of the IEEE
                      Computer Society Conf. on Computer Vision and Pattern Recognition. 2020. 3823−3832.
                 [120]    Liu DN, Zhang  DH,  Song Y, Zhang  F, O’Donnell L, Huang H,  Chen M, Cai WD. Unsupervised instance  segmentation  in
                      microscopy images via panoptic domain  adaptation  and task re-weighting. In: Proc. of the  IEEE Computer  Society  Conf. on
                      Computer Vision and Pattern Recognition. 2020. 4243−4252.
                 [121]    Pandey S, Singh PR, Tian J. An image augmentation approach using two-stage generative adversarial network for nuclei image
                      segmentation. Biomedical Signal Processing and Control, 2020,57:1−10.
                 [122]    Yan ZQ, Yang X, Cheng KT. Enabling a single deep learning model for accurate gland instance segmentation: A shape-aware
                      adversarial learning framework. IEEE Trans. on Medical Imaging, 2020,39(6):2176−2189.
                 [123]    Zhao Y, Yang F, Fang YQ, Liu HL, Zhou NY, Zhang J, Sun JR, Yang S, Menze B, Fan XJ, Yao JH. Predicting lymph node
                      metastasis using histopathological images based on multiple instance learning with deep graph convolution. In: Proc. of the IEEE
                      Computer Society Conf. on Computer Vision and Pattern Recognition. 2020. 4837−4846.
                 [124]    He KM, Gkioxari G, Dollár  P, Girshick R. Mask R-CNN.  In:  Proc.  of the  IEEE  Int’l  Conf.  on Computer Vision. 2017.
                      2961−2969.
                 [125]    Zhou YN, Onder OF, Dou Q, Tsougenis E, Chen H, Heng PA. CIA-Net: Robust nuclei instance segmentation with contour-aware
                      information aggregation. In: Proc. of the Int’l Conf. on Information Processing in Medical Imaging. 2019. 682−693.
                 [126]    Tajbakhsh N, Jeyaseelan L, Li  Q, Chiang  JN,  Wu ZH,  Ding XW. Embracing  imperfect  datasets: A review  of  deep  learning
                      solutions for medical image segmentation. Medical Image Analysis, 2020,63:Article No.101693.
                 [127]    Kim Y, Kim S, Kim T, Kim C. CNN-based semantic segmentation using level set loss. In: Proc. of the IEEE Winter Conf. on
                      Applications of Computer Vision. 2019. 1752−1760.
                 [128]    Chen X, Williams BM, Vallabhaneni SR, Czanner G, Williams R, Zheng YL. Learning active contour models for medical image
                      segmentation. In: Proc. of the IEEE Computer Society Conf. on Computer Vision and Pattern Recognition. 2019. 11632−11640.
                 [129]    Zhang LS, Bai M, Liao RJ, Urtasun R, Marcos D, Tuia D, Kellenberger B. Learning deep structured active contours end-to-end.
                      In: Proc. of the IEEE Computer Society Conf. on Computer Vision and Pattern Recognition. 2018. 8877−8885.
                 [130]    Xu Z, Huang JZ. Detecting 10 000 cells in one second. In: Proc. of the Int’l Conf. on Medical Image Computing and Computer
                      Assisted Intervention. 2016. 676−684.
                 [131]    Kashif MN,  Raza  SEA, Sirinukunwattana  K, Arif  M,  Rajpoot N.  Handcrafted features with convolutional neural networks for
                      detection of tumor cells in histology images. In: Proc. of the IEEE Int’l Symp. on Biomedical Imaging. 2016. 1029−1032.
                 [132]    Li CM, Xu CY, Gui CF, Fox MD. Distance regularized level set evolution and its application to image segmentation. IEEE Trans.
                      on Image Processing, 2010,19(12):3243−3254.
                 [133]    Milletari F, Navab N, Ahmadi SA. V-Net: Fully convolutional neural networks for volumetric medical image segmentation. In:
                      Proc. of the IEEE Int’l Conf. on 3D Vision. 2016. 565−571.
                 [134]    Jégou S, Drozdzal M, Vazquez D, Romero A, Bengio Y. The one hundred layers tiramisu: Fully convolutional DenseNets for
                      semantic segmentation. In: Proc. of the IEEE Computer Society Conf. on Computer Vision and Pattern Recognition Workshops.
                      2017. 11−19.
                 [135]    Huang Q, Xia CY, Wu CH, Li SY, Wang Y, Kuo CCJ. Semantic segmentation with reverse attention. In: Proc. of the British
                      Machine Vision Conf. 2017. 1−13.
                 [136]    Li HC, Xiong PF, An J, Wang LX. Pyramid attention network for semantic segmentation. In: Proc. of the British Machine Vision
                      Conf. 2018. 1−13.
                 [137]    Fu J, Liu J, Tian HJ, Li Y, Bao YJ, Fang ZW, Lu HQ. Dual attention network for scene segmentation. In: Proc. of the IEEE
                      Computer Society Conf. on Computer Vision and Pattern Recognition. 2019. 3146−3154.
   227   228   229   230   231   232   233   234   235   236   237