Page 233 - 《软件学报》2021年第5期
P. 233

宋杰  等:基于深度学习的数字病理图像分割综述与展望                                                      1457


                 [138]    Zhang XF, Dou H, Ju T, Xu J, Zhang ST. Fusing heterogeneous features from stacked sparse autoencoder for histopathological
                      image analysis. IEEE Journal of Biomedical and Health Informatics, 2016,20(5):1377−1383.
                 [139]    Gogna  A, Majumdar A, Ward R. Semi-supervised  stacked  label consistent autoencoder for  reconstruction and analysis  of
                      biomedical signals. IEEE Trans. on Biomedical Engineering, 2017,64(9):2196−2205.
                 [140]    Zheng S, Jayasumana S, Romera-Paredes B, Vineet V, Su ZZ, Du DL, Huang C, Torr PHS. Conditional random fields as recurrent
                      neural networks. In: Proc. of the IEEE Int’l Conf. on Computer Vision. 2015. 1529−1537.
                 [141]    Yang QS, Yan PK, Zhang YB, Yu, HY, Shi YY, Mou XQ, Kalra MK, Zhang Y, Sun L, Wang G. Low-dose CT image denoising
                      using a generative adversarial network with Wasserstein distance and perceptual loss. IEEE Trans. on Medical Imaging, 2018,
                      37(6):1348−1357.
                 [142]    Varghese A, Mohammed SKP, Sai Saketh C, Ganapathy K. Generative adversarial networks for brain lesion detection. In: Proc.
                      of the Medical Imaging 2017: Image Processing. 2017. [doi: 10.1117/12.2254487]
                 [143]    Chen XR, Konukoglu E. Unsupervised  detection  of lesions  in  brain MRI  using constrained adversarial auto-encoders. arXiv
                      preprint arXiv:1806.04972, 2018.
                 [144]    Dou Q, Ouyang C, Chen C, Chen H, Heng PA. Unsupervised cross-modality domain adaptation of convnets for biomedical image
                      segmentations with adversarial loss. In: Proc. of the Int’l Joint Conf. on Artificial Intelligence. 2018. 691−697.
                 [145]    Bokhorst JM,  Pinckaers H,  van Zwam P, Nagtegaal  I,  van  der Laak  J, Ciompi  F. Learning  from sparsely annotated data  for
                      semantic segmentation in histopathology  images. In: Proc. of  the Int’l  Conf. on  Medical Imaging with  Deep  Learning. 2019.
                      84−91.
                 [146]    Shan HM, Zhang Y, Yang QS, Kruger U, Kalra MK, Sun L, Cong WX, Wang G. 3-D convolutional encoder-decoder network for
                      low-dose CT via transfer learning from a 2-D trained network. IEEE Trans. on Medical Imaging, 2018,37(6):1522−1534.
                 [147]    Jaccard P. The distribution of the flora in the alpine zone. New Phytologist, 1912,11(2):37−50.
                 [148]    Dice LR. Measures of the amount of ecologic association between species. Ecology, 1945,26(3):297−302.
                 [149]    Song  J, Xiao L, Lian ZC. Boundary-to-marker evidence-controlled  segmentation and MDL-based contour  inference  for
                      overlapping nuclei. IEEE Journal of Biomedical and Health Informatics, 2017,21(2):451−464.
                 [150]    Dai JF, He KM, Sun J. BoxSup: Exploiting bounding boxes to supervise convolutional networks for semantic segmentation. In:
                      Proc. of the IEEE Int’l Conf. on Computer Vision. 2015. 1635−1643.
                 [151]    Lin GS, Shen CH, van den Hengel A, Reid I. Efficient piecewise training of deep structured models for semantic segmentation. In:
                      Proc. of the IEEE Computer Society Conf. on Computer Vision and Pattern Recognition. 2016. 3194−3203.
                 [152]    Liu ZW, Li XX, Luo P, Loy CC, Tang XO. Semantic image segmentation via deep parsing network. In: Proc. of the IEEE Int’l
                      Conf. on Computer Vision. 2015. 1377−1385.
                 [153]    Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. DeepLab: Semantic image segmentation with deep convolutional
                      nets, atrous convolution, and  fully connected crfs. IEEE Trans.  on  Pattern  Analysis and Machine Intelligence,  2017,40(4):
                      834−848.
                 [154]    Peng CX, Zhang  XY, Yu G, Luo GM,  Sun J. Large  kernel matters—Improve semantic segmentation  by global  convolutional
                      network. In: Proc. of the IEEE Computer Society Conf. on Computer Vision and Pattern Recognition. 2017. 4353−4361.
                 [155]    Lin GS, Milan A, Shen CH, Reid I. Refinenet: Multi-path refinement networks for high-resolution semantic segmentation. In:
                      Proc. of the IEEE Computer Society Conf. on Computer Vision and Pattern Recognition. 2017. 1925−1934.
                 [156]    Wu ZF, Shen CH, van den Hengel A. Wider or deeper: Revisiting the ResNet model for visual recognition. Pattern Recognition,
                      2019,90:119−133.
                 [157]    Yuan YH, Chen XL, Wang JD. Object-contextual representations for semantic segmentation. arXiv preprint arXiv:1909.11065,
                      2019.
                 [158]    Zhao HS, Shi JP, Qi XJ, Wang XG, Jia JY. Pyramid scene parsing network. In: Proc. of the IEEE Computer Society Conf. on
                      Computer Vision and Pattern Recognition. 2017. 2881−2890.
                 [159]    Chen LC, Papandreou G, Schroff F, Adam H. Rethinking atrous convolution for semantic image segmentation. arXiv preprint
                      arXiv:1706.05587, 2017.
   228   229   230   231   232   233   234   235   236   237   238