Page 231 - 《软件学报》2021年第5期
P. 231

宋杰  等:基于深度学习的数字病理图像分割综述与展望                                                      1455


                 [96]    Zeng  T,  Wu  B,  Ji SW.  DeepEM3D:  Approaching human-level performance on 3D  anisotropic EM image segmentation.
                      Bioinformatics, 2017,33(16):2555−2562.
                 [97]    Khoshdeli M, Winkelmaier G, Parvin B. Multilayer encoder-decoder network for 3D nuclear segmentation in spheroid models of
                      human mammary epithelial cell lines. In: Proc. of the IEEE Computer Society Conf. on Computer Vision and Pattern Recognition
                      Workshops. 2018. 2320−2326.
                 [98]    Saha M, Chakraborty C. Her2Net: A deep framework for semantic segmentation and classification of cell membranes and nuclei
                      in breast cancer evaluation. IEEE Trans. on Image Processing, 2018,27(5):2189−2200.
                 [99]    Senaras C,  Sahiner B, Tozbikian G, Lozanski G, Gurcan MN. Creating  synthetic  digital slides  using conditional  generative
                      adversarial networks: application to Ki67 staining. In: Proc. of the Medical Imaging 2018: Digital Pathology. 2018. [doi: 10.1117/
                      12.2294999]
                 [100]    Januszewski M, Kornfeld J, Li PH, Pope A, Blakely T, Lindsey L, Maitin-Shepard J, Tyka M, Denk W, Jain V. High-precision
                      automated reconstruction of neurons with flood-filling networks. Nature Methods, 2018,15:605−610.
                 [101]    Graham S, Rajpoot NM. Sams-Net: Stain-aware multi-scale network for instance-based nuclei segmentation in histology images.
                      In: Proc. of the IEEE Int’l Symp. on Biomedical Imaging. 2018. 590−594.
                 [102]    Mahmood F, Borders D, Chen RJ, McKay GN, Salimian KJ, Baras A, Durr NJ. Deep adversarial training for multi-organ nuclei
                      segmentation in histopathology images. IEEE Trans. on Medical Imaging, 2020,39(11):3257−3267.
                 [103]    Yan  ZQ,  Yang X,  Cheng  KT.  A three-stage deep  learning  model for  accurate retinal vessel segmentation. IEEE Journal of
                      Biomedical and Health Informatics, 2019,23(4):1427−1436.
                 [104]    Xue Y, Bigras G, Hugh J, Ray N. Training convolutional neural networks and compressed sensing end-to-end for microscopy cell
                      detection. IEEE Trans. on Medical Imaging, 2019,38(11):2632−2641.
                 [105]    Jin QG, Meng ZP, Pham TD, Chen Q, Wei LY, Su R. DUNet: A deformable network for retinal vessel segmentation. Knowledge-
                      based Systems, 2019,178:149−162.
                 [106]    Chakravarty  A, Sivaswamy J.  RACE-Net:  A recurrent neural network for biomedical image segmentation. IEEE Journal of
                      Biomedical and Health Informatics, 2019,23(3):1151−1162.
                 [107]    Wollmann T, Gunkel M, Chung I, Erfle H, Rippe K, Rohr K. GRUU-Net: Integrated convolutional and gated recurrent neural
                      network for cell segmentation. Medical Image Analysis, 2019,56:68−79.
                 [108]    Yi JR, Wu PX, Jiang ML, Huang QY, Hoeppner DJ, Metaxas DN. Attentive neural cell instance segmentation. Medical Image
                      Analysis, 2019,55:228−240.
                 [109]    Naylor P, Laé M, Reyal F, Walter T. Segmentation of nuclei in histopathology images by deep regression of the distance map.
                      IEEE Trans. on Medical Imaging, 2019,38(2):448−459.
                 [110]    Payer C, Štern D, Feiner M, Bischof H, Urschler M. Segmenting and tracking cell instances with cosine embeddings and recurrent
                      hourglass networks. Medical Image Analysis, 2019,57:106−119.
                 [111]    Shin SY,  Lee S,  Yun ID,  Lee  KM. Deep vessel segmentation by learning graphical  connectivity.  Medical Image  Analysis,
                      2019,58: 1−14.
                 [112]    Qu H, Yan ZN, Riedlinger GM, De S, Metaxas DN. Improving nuclei/gland instance segmentation in histopathology images by
                      full resolution neural network  and  spatial  constrained loss.  In: Proc. of the  Int’l  Conf. on  Medical Image  Computing  and
                      Computer Assisted Intervention. 2019. 378−386.
                 [113]    Xie YT, Lu H, Zhang JP, Shen CH, Xia Y. Deep segmentation-emendation model for gland instance segmentation. In: Proc. of the
                      Int’l Conf. on Medical Image Computing and Computer Assisted Intervention. 2019. 469−477.
                 [114]    Luna M, Kwon M, Park SH. Precise separation of adjacent nuclei using a siamese neural network. In: Proc. of the Int’l Conf. on
                      Medical Image Computing and Computer Assisted Intervention. 2019. 577−585.
                 [115]    Koohbanani NA, Jahanifar M, Gooya A, Rajpoot N. Nuclear instance segmentation using a proposal-free spatially aware deep
                      learning framework. In: Proc. of the Int’l  Conf. on  Medical Image  Computing  and  Computer  Assisted Intervention. 2019.
                      622−630.
                 [116]    Mou L, Zhao YT, Chen L, Cheng J, Gu ZW, Hao HY, Qi H, Zheng YL, Frangi A, Liu J. CS-Net: Channel and spatial attention
                      network for curvilinear structure segmentation. In: Proc. of the Int’l Conf. on Medical Image Computing and Computer Assisted
                      Intervention. 2019. 721−730.
   226   227   228   229   230   231   232   233   234   235   236