Page 236 - 《软件学报》2021年第5期
P. 236

1460                                     Journal of Software  软件学报 Vol.32, No.5,  May 2021

                 [204]    Song J, Xiao L, Lian ZC. Cascade sparse convolution and decision tree ensemble model for nuclear segmentation in pathology
                      images. Acta Automatica Sinica, 2020,47(2):378−390 (in Chinese with English abstract). [doi: 10.16383/j.aas.c190672]
                 [205]    Bahdanau D, Cho K, Bengio Y. Neural machine translation by jointly learning to align and translate. In: Proc. of the Int’l Conf.
                      on Learning Representations. 2015. 1−15.
                 [206]    Baxter J. Theoretical Models of Learning to Learn. Boston: Kluwer Academic Publishers, 1998.
                 [207]    Bayramoglu  N,  Heikkilä J.  Transfer learning for  cell nuclei  classification in histopathology images. In: Proc. of the  European
                      Conf. on Computer Vision. 2016. 532−539.
                 [208]    Doersch C, Gupta A, Efros AA. Unsupervised visual representation learning by context prediction. In: Proc. of the IEEE Int’l
                      Conf. on Computer Vision. 2015. 1422−1430.
                 [209]    Zhang PY, Wang FS, Zheng YF. Self supervised deep representation learning for fine-grained body part recognition. In: Proc. of
                      the IEEE Int’l Symp. on Biomedical Imaging. 2017. 578−582.
                 [210]    Kamentsky L, Jones TR, Fraser A, Bray MA, Logan DJ, Madden KL, Ljosa V, Rueden C, Eliceiri KW, Carpenter AE. Improved
                      structure, function and  compatibility for  CellProfiler:  Modular high-throughput image  analysis software.  Bioinformatics, 2011,
                      27(8):1179−1180.
                 [211]    Myatt DR, Hadlington T, Ascoli GA, Nasuto SJ. Neuromantic—From semi-manual to semi-automatic reconstruction of neuron
                      morphology. Frontiers in Neuroinformatics, 2012,6(4):1−14.

                 附中文参考文献:
                    [9]  许燕,汤烨,闫雯,张益肇,来茂德.病理人工智能的现状和展望.中华病理学杂志,2017,46(9):1−4.
                  [11]  肖书渊.炎症性肠病病理图谱.北京:中国协和医科大学出版社,2016.
                  [12]  田娟秀,刘国才,谷珊珊,鞠忠建,刘劲光,顾冬冬.医学图像分析深度学习方法研究与挑战.自动化学报,2018,44(3):401−424.
                  [13]  胡佐鸿,赵春,包骥,步宏.全片数字化图像在诊断细胞病理学中的应用.中华病理学杂志,2017,46(8):581−585.
                  [14]  骆小飞,徐军,陈佳梅.基于逐像素点深度卷积网络分割模型的上皮和间质组织分割.自动化学报,2017,43(11):2003−2013.
                  [33]  来茂德.常见肿瘤组织学分级图谱.北京:人民卫生出版社,2009.
                  [72]  廖星宇.深度学习入门之 PyTorch.北京:电子工业出版社,2017.
                 [204]  宋杰,肖亮,练智超.级联稀疏卷积与决策树集成的病理图像细胞核分割方法.自动化学报,2020,47(2):378−390 [doi: 10.16383/j.
                      aas.c190672]



                              宋杰(1986-),男,博士,讲师,CCF 专业会                    蔡子贇(1987-),男,博士,讲师,主要研究
                              员,主要研究领域为生物医学图像处理,深                          领域为深度学习,计算机视觉,模式识别,
                              度学习,机器学习与模式识别.                               域的自适应.



                              肖亮(1976-),男,博士,教授,博士生导师,                     蒋国平(1966-),男,博士,教授,博士生导
                              CCF 高级会员,主要研究领域为信号处理,                        师,主要研究领域为智能系统与复杂网络.
                              生物医学图像处理,机器学习与模式识别,
                              计算机视觉.

                              练智超(1983-),男,博士,副教授,主要研
                              究领域为计算机视觉,人工智能系统安全,
                              工业互联网.
   231   232   233   234   235   236   237   238   239   240   241