Page 227 - 《软件学报》2021年第5期
P. 227
宋杰 等:基于深度学习的数字病理图像分割综述与展望 1451
[8] Xu G, Song ZG, Sun Z, Ku C, Yang Z, Liu CC, Wang SH, Ma JP, Xu W. CAMEL: A weakly supervised learning framework for
histopathology image segmentation. In: Proc. of the IEEE Int’l Conf. on Computer Vision. 2019. 10682−10691.
[9] Xu Y, Tang Y, Yan W, Zhang YZ, Lai MD. Current status and prospect of artificial intelligence in pathology. Chinese Journal of
Pathology, 2017,46(9):1−4 (in Chinese with English abstract).
[10] Wang SY, Xiang JB, Li ZY, Lu SH, Hu J, Gao X, Yu L, Wang L, Wang JP, Wu Y, Chen ZY, Zhu HG. A plasma microRNA panel
for early detection of colorectal cancer. Int’l Journal of Cancer, 2015,136(1):152−161.
[11] Xiao SY. Pathology Atlas of Inflammatory Bowel Disease. Beijing: Peking Union Medical College Press, 2016 (in Chinese).
[12] Tian JX, Liu GC, Gu SS, Ju ZJ, Liu JG, Gu DD. Deep learning in medical image analysis and its challenges. Acta Automatica
Sinica, 2018,44(3):401−424 (in Chinese with English abstract).
[13] Hu ZH, Zhao C, Bao J, Bu H. Application of whole slide imaging in diagnostic cytology. Chinese Journal of Pathology, 2017,
46(8):581−585 (in Chinese with English abstract).
[14] Luo XF, Xu J, Chen JM. A deep convolutional network for pixel-wise segmentation on epithelial and stromal tissues in histologic
images. Acta Automatica Sinica, 2017,43(11):2003−2013 (in Chinese with English abstract).
[15] LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proc. of the IEEE, 1998,
86(11):2278−2324.
[16] Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proc. of the IEEE Computer Society
Conf. on Computer Vision and Pattern Recognition. 2015. 3431−3440.
[17] Sutskever I, Vinyals O, Le QV. Sequence to sequence learning with neural networks. In: Proc. of the Conf. on Neural Information
Processing Systems. 2014. 3104−3112.
[18] Rumelhart DE, Hinton GE, Williams RJ. Learning representations by back-propagating errors. Cognitive Modeling, 1986,323:
533−536.
[19] Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y. Generative adversarial nets. In:
Proc. of the Int’l Conf. on Neural Information Processing Systems. 2014. 2672−2680.
[20] Girshick R, Donahue J, Darrell T, Malik J. Rich feature hierarchies for accurate object detection and semantic segmentation. In:
Proc. of the IEEE Computer Society Conf. on Computer Vision and Pattern Recognition. 2014. 580−587.
[21] Minaee S, Boykov Y, Porikli F, Plaza A, Kehtarnavaz N, Terzopoulos D. Image segmentation using deep learning: A survey.
arXiv preprint arXiv:2001.05566, 2020.
[22] Deng L, Yu D. Deep learning: Methods and applications. Foundations and Trends® in Signal Processing, 2014,7(3-4):197−387.
[23] Shen DG, Wu GR, Suk HI. Deep learning in medical image analysis. Annual Review of Biomedical Engineering, 2017,19:
221−248.
[24] Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, van der Laak JAWM, van Ginneken B, Sánchez CI. A
survey on deep learning in medical image analysis. Medical Image Analysis, 2017,42:60−88.
[25] Min S, Lee B, Yoon S. Deep learning in bioinformatics. Briefings in Bioinformatics, 2017,18(5):851−869.
[26] Pan YS, Liu MX, Xia Y, Shen DG. Neighborhood-correction algorithm for classification of normal and malignant cells. In: Proc.
of the IEEE Int’l Symp. on Biomedical Imaging. 2019. 73−82.
[27] Payer C, Štern D, Bischof H, Urschler M. Integrating spatial configuration into heatmap regression based CNNs for landmark
localization. Medical Image Analysis, 2019,54:207−219.
[28] Chen H, Wang XY, Huang YJ, Wu XY, Yu YZ, Wang LS. Harnessing 2D networks and 3D features for automated pancreas
segmentation from volumetric CT image. In: Proc. of the Int’l Conf. on Medical Image Computing and Computer Assisted
Intervention. 2019. 339−347.
[29] Gurcan MN, Boucheron LE, Can A, Madabhushi A, Rajpoot NM, Yener B. Histopathological image analysis: A review. IEEE
Reviews in Biomedical Engineering, 2009,2:147−171.
[30] Veta M, Pluim JPW, van Diest P, Viergever MA. Breast cancer histopathology image analysis: A review. IEEE Trans. on
Biomedical Engineering, 2014,61(5):1400−1411.
[31] Irshad H, Veillard A, Roux L, Racoceanu D. Methods for nuclei detection, segmentation, and classification in digital
histopathology: A review-current status and future potential. IEEE Reviews in Biomedical Engineering, 2014,7:97−114.