Page 227 - 《软件学报》2021年第5期
P. 227

宋杰  等:基于深度学习的数字病理图像分割综述与展望                                                      1451


                  [8]    Xu G, Song ZG, Sun Z, Ku C, Yang Z, Liu CC, Wang SH, Ma JP, Xu W. CAMEL: A weakly supervised learning framework for
                      histopathology image segmentation. In: Proc. of the IEEE Int’l Conf. on Computer Vision. 2019. 10682−10691.
                  [9]    Xu Y, Tang Y, Yan W, Zhang YZ, Lai MD. Current status and prospect of artificial intelligence in pathology. Chinese Journal of
                      Pathology, 2017,46(9):1−4 (in Chinese with English abstract).
                 [10]    Wang SY, Xiang JB, Li ZY, Lu SH, Hu J, Gao X, Yu L, Wang L, Wang JP, Wu Y, Chen ZY, Zhu HG. A plasma microRNA panel
                      for early detection of colorectal cancer. Int’l Journal of Cancer, 2015,136(1):152−161.
                 [11]    Xiao SY. Pathology Atlas of Inflammatory Bowel Disease. Beijing: Peking Union Medical College Press, 2016 (in Chinese).
                 [12]    Tian JX, Liu GC, Gu SS, Ju ZJ, Liu JG, Gu DD. Deep learning in medical image analysis and its challenges. Acta Automatica
                      Sinica, 2018,44(3):401−424 (in Chinese with English abstract).
                 [13]    Hu ZH, Zhao C, Bao J, Bu H. Application of whole slide imaging in diagnostic cytology. Chinese Journal of Pathology, 2017,
                      46(8):581−585 (in Chinese with English abstract).
                 [14]    Luo XF, Xu J, Chen JM. A deep convolutional network for pixel-wise segmentation on epithelial and stromal tissues in histologic
                      images. Acta Automatica Sinica, 2017,43(11):2003−2013 (in Chinese with English abstract).
                 [15]    LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proc. of the IEEE, 1998,
                      86(11):2278−2324.
                 [16]    Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proc. of the IEEE Computer Society
                      Conf. on Computer Vision and Pattern Recognition. 2015. 3431−3440.
                 [17]    Sutskever I, Vinyals O, Le QV. Sequence to sequence learning with neural networks. In: Proc. of the Conf. on Neural Information
                      Processing Systems. 2014. 3104−3112.
                 [18]    Rumelhart DE, Hinton GE, Williams RJ. Learning representations by back-propagating errors. Cognitive Modeling, 1986,323:
                      533−536.
                 [19]    Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y. Generative adversarial nets. In:
                      Proc. of the Int’l Conf. on Neural Information Processing Systems. 2014. 2672−2680.
                 [20]    Girshick R, Donahue J, Darrell T, Malik J. Rich feature hierarchies for accurate object detection and semantic segmentation. In:
                      Proc. of the IEEE Computer Society Conf. on Computer Vision and Pattern Recognition. 2014. 580−587.
                 [21]    Minaee S,  Boykov Y, Porikli F, Plaza A, Kehtarnavaz  N,  Terzopoulos  D. Image segmentation using deep learning:  A  survey.
                      arXiv preprint arXiv:2001.05566, 2020.
                 [22]    Deng L, Yu D. Deep learning: Methods and applications. Foundations and Trends® in Signal Processing, 2014,7(3-4):197−387.
                 [23]    Shen DG, Wu GR,  Suk HI. Deep  learning in medical  image analysis. Annual Review  of Biomedical Engineering,  2017,19:
                      221−248.
                 [24]    Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, van der Laak JAWM, van Ginneken B, Sánchez CI. A
                      survey on deep learning in medical image analysis. Medical Image Analysis, 2017,42:60−88.
                 [25]    Min S, Lee B, Yoon S. Deep learning in bioinformatics. Briefings in Bioinformatics, 2017,18(5):851−869.
                 [26]    Pan YS, Liu MX, Xia Y, Shen DG. Neighborhood-correction algorithm for classification of normal and malignant cells. In: Proc.
                      of the IEEE Int’l Symp. on Biomedical Imaging. 2019. 73−82.
                 [27]    Payer C, Štern D, Bischof H, Urschler M. Integrating spatial configuration into heatmap regression based CNNs for landmark
                      localization. Medical Image Analysis, 2019,54:207−219.
                 [28]    Chen  H, Wang XY, Huang YJ, Wu XY, Yu YZ,  Wang LS.  Harnessing 2D networks  and 3D features for  automated pancreas
                      segmentation from volumetric CT image. In: Proc. of the Int’l  Conf. on Medical Image  Computing  and  Computer Assisted
                      Intervention. 2019. 339−347.
                 [29]    Gurcan MN, Boucheron LE, Can A, Madabhushi A, Rajpoot NM, Yener B. Histopathological image analysis: A review. IEEE
                      Reviews in Biomedical Engineering, 2009,2:147−171.
                 [30]    Veta M,  Pluim  JPW,  van Diest  P, Viergever  MA. Breast cancer  histopathology  image analysis: A review. IEEE Trans.  on
                      Biomedical Engineering, 2014,61(5):1400−1411.
                 [31]    Irshad  H,  Veillard A,  Roux L,  Racoceanu D.  Methods for nuclei detection, segmentation,  and  classification in digital
                      histopathology: A review-current status and future potential. IEEE Reviews in Biomedical Engineering, 2014,7:97−114.
   222   223   224   225   226   227   228   229   230   231   232