Page 79 - 摩擦学学报2025年第5期
P. 79

第 5 期          李东伟, 等: 基础油分子结构对多孔聚酰亚胺含油特性及两者复合体系润滑机理的影响                                      713

            孔聚酰亚胺材料两者复合润滑机理的作用变化规律.                                2021.127989.
            本文中采用已成熟的工艺制备了多孔聚酰亚胺材料                             [  5  ]   Chen  Hao,  Zhang  Yi,  Gao  Kai,  et  al.  Ultralow  friction  polymer
                                                                   composites enabled by the solid–liquid core microcapsules at high
            PPI (YS-20),选择不同结构的3种基础油PAO10、DIOS
                                                                   temperatures[J]. Chemical Engineering Journal, 2023, 476: 146780.
            和PEG400对其浸渍,探究并建立不同结构基础油对
                                                                   doi: 10.1016/j.cej.2023.146780.
            多孔聚酰亚胺的含油特性影响内在关联;进一步模拟
                                                               [  6  ]   Zhang Lin, Xie Guoxin, Wu Shuai, et al. Ultralow friction polymer
            含油PPI的实际工况,系统研究含3种不同基础油的                               composites  incorporated  with  monodispersed  oil  microcapsules[J].
            PPI摩擦学行为,揭示不同基础油与PPI固-液复合润滑                            Friction, 2021, 9(1): 29–40. doi: 10.1007/s40544-019-0312-4.
            机制,阐明不同基础油的结构和复合体系的协同规律.                           [  7  ]   Wang  Huaiyuan,  Li  Meiling,  Liu  Dujuan,  et  al.  Tribological
            论文中旨在突破传统工艺对制备兼具小孔径(含油保                                properties tests and simulations of the nano-micro multilevel porous
            持率)和高孔隙率(含油率)的PPI固有矛盾,以基础油                             self-lubricating  PEEK  composites  with  ionic  liquid  lubrication[J].
                                                                   Journal of Materials Science, 2016, 51(8): 3917–3927. doi: 10.1007/
            的结构选择优化为突破口,为多孔含油PPI的长寿命
                                                                   s10853-015-9711-8.
            润滑设计提供重要参考. 综合本研究中的摩擦性能测
                                                               [  8  ]   Kultamaa M, Mönkkönen K, Saarinen J J, et al. Self-lubrication of
            试条件及接触方式,所得结论如下:
                                                                   porous  metal  injection  molded  (MIM)  17-4PH  stainless  steel  by
                a. 相同的PPI孔结构参数,不同结构的基础油对                           impregnated  paraffin  wax[J].  Tribology  International,  2022,  174:
            PPI的含油特性存在重要影响. 基础油极性越大,PPI                            107735. doi: 10.1016/j.triboint.2022.107735.
            的含油率越高,其含油保持率也越强.                                  [  9  ]   Salam A, Xie Guoxin, Guo Dan, et al. Fabrication and tribological
                b. 相比PAO10和DIOS,含极性较大基础油PEG400                     behavior of self-lubricating composite impregnated with synthesized
                                                                   inorganic  hollow  fullerene-like  MoS 2 [J].  Composites  Part  B:
            的PPI,两者复合体系不但具有较低的摩擦系数,而且
                                                                   Engineering,  2020,  200:  108284.  doi:  10.1016/j.compositesb.2020.
            还表现出了良好的抗磨性能.
                                                                   108284.
                c. 在摩擦过程中,PPI表面的多孔结构能够促进
                                                               [10]   Wang  Yurong,  Cai  Meirong,  Xing  Ximin,  et  al.  Preparation  and
            润滑油的释放与回吸循环. 然而,这一过程容易受到
                                                                   performance of gel-impregnated bearing self-lubricating material[J].
            包含在润滑油中的“黑色物质”的影响,导致一定程度                               Tribology, 2022, 42(4): 792–802 (in Chinese) [王玉荣, 蔡美荣, 邢
            的破坏. 该黑色物质主要包含对偶金属的氧化磨屑、                               喜民, 等. 含浸凝胶自润滑轴承材料的制备及性能研究[J]. 摩擦学
            润滑油的催化分解物、再交联反应物以及PI自身结构                               学报, 2022, 42(4): 792–802]. doi: 10.16078/j.tribology.2021069.
                                                               [11]   Xu Xing, Guo Rui, Shu Xianwei, et al. One-pot fabrication of ultra-
            的摩擦催化降解物.
                                                                   high oil content rate self-lubricating polymer via pre-embedding oil-
                                                                   impregnated  fibres[J].  Composites  Communications,  2022,  31:
            参 考 文 献
            [  1  ]   Liu  Shuwen,  Gao  Qiulong,  Hou  Kaiming,  et  al.  Solvent-free  101102. doi: 10.1016/j.coco.2022.101102.
                 covalent  MXene  nanofluid:  a  new  lubricant  combining  the  [12]   Wan  Changxin,  Jia  Dan,  Zhan  Shengpeng,  et  al.  Preparation  and
                 characteristics  of  solid  and  liquid  lubricants[J].  Chemical  tribological  behavior  of  high-temperature  oil-containing  porous
                 Engineering  Journal,  2023,  462:  142238.  doi:  10.1016/j.cej.2023.  polyimides[J].  Polymer  Engineering  &  Science,  2023,  63(3):
                 142238.                                           1022–1031. doi: 10.1002/pen.26262.
            [  2  ]   Wang Liping, Pan Bingli, Gao Jiayu, et al. Tribological behaviors of  [13]   He Guorong, Yuan Junya, Li Yong, et al. Preparation of MoS 2 /ZnS
                 porous  3D  graphene  lubricant  reinforced  monomer  casting  nano-powder  and  tribological  behavior  of  MoS 2 /ZnS  nano-powder
                 polyamide 6 composite[J]. Advanced Engineering Materials, 2020,  reinforced  polyimide  composites[J].  Tribology,  2022,  42(2):
                 22(5): 1901170. doi: 10.1002/adem.202070020.      265–274 (in Chinese) [何国荣, 袁军亚, 李勇, 等. 二硫化钼/硫化锌
            [  3  ]   Li Zhe, Duan Chunjian, Gao Chuanping, et al. Solid-liquid duplex  纳米粉体的制备及其改性聚酰亚胺复合材料的摩擦学性能研
                 lubrication  behavior  and  mechanism  of  polyimide  with  different  究 [J].  摩 擦 学 学 报 ,  2022,  42(2):  265–274].  doi:  10.16078/j.
                 molecular structure[J]. Tribology, 2023, 43(4): 397–409 (in Chinese)  tribology.2021047.
                 [李哲, 段春俭, 高传平, 等. 不同分子结构聚酰亚胺固-液复合摩            [14]   Duan Chunjian, He Ren, Li Song, et al. Exploring the friction and
                 擦学行为与润滑机理研究[J]. 摩擦学学报, 2023, 43(4): 397–409].     wear behaviors of Ag-Mo hybrid modified thermosetting polyimide
                 doi: 10.16078/j.tribology.2021310.                composites  at  high  temperature[J].  Friction,  2020,  8(5):  893–904.
            [  4  ]   Chen Hao, Zhang Lin, Li Mengyu, et al. Ultralow friction polymer  doi: 10.1007/s40544-019-0306-2.
                 composites  containing  highly  dispersed  and  thermally  robust  [15]   Chen Wenbin, Wang Wenzhong, Zhu Pengzhe, et al. Effects of pore
                 microcapsules[J].  Colloids  and  Surfaces  A:  Physicochemical  and  size  on  the  lubrication  properties  of  porous  polyimide  retainer
                 Engineering  Aspects,  2022,  634:  127989.  doi:  10.1016/j.colsurfa.  material[J]. Friction, 2023, 11(8): 1419–1429. doi: 10.1007/s40544-
   74   75   76   77   78   79   80   81   82   83   84