Page 58 - 摩擦学学报2025年第4期
P. 58

546                                    摩擦学学报(中英文)                                        第 45 卷

            [  2  ]   Wu Bi, Zhang Zhenbo, Li Shu. Advances in tribology of aero-engine  Performance, 2017, 26(2): 792–801. doi: 10.1007/s11665-016-2495-4.
                 materials[J]. Tribology, 2023, 43(10): 1099–1117 (in Chinese) [吴  [13]   Liu  Ben,  Zhang  Dongqing,  Li  Xiangfen,  et  al.  Effect  of  graphite
                 彼, 张振波, 李曙. 航空发动机材料摩擦学研究进展[J]. 摩擦学学               flakes particle sizes on the microstructure and properties of graphite
                 报, 2023, 43(10): 1099–1117]. doi: 10.16078/j.tribology.2023226.  flakes/copper  composites[J].  Journal  of  Alloys  and  Compounds,
            [  3  ]   Bonthula  S,  Bonthula  S  R,  Pothu  R,  et  al.  Recent  advances  in  2018, 766: 382–390. doi: 10.1016/j.jallcom.2018.06.129.
                 copper-based   materials   for   sustainable   environmental  [14]   Jin  Yongping,  Guo  Bin,  Zheng  Ailong,  et  al.  Resistivity  and
                 applications[J]. Sustainable Chemistry, 2023, 4(3): 246–271. doi: 10.  abrasion performance of copper matrix pantograph slider samples[J].
                 3390/suschem4030019.                              Journal of Harbin Institute of Technology, 2003, 35(4): 441–446 (in
            [  4  ]   Su Linlin, Gao Fei, Han Xiaoming, et al. Effect of copper powder  Chinese) [金永平, 郭斌, 郑艾龙, 等. 铜基受电弓滑板试件电阻率
                 third  body  on  tribological  property  of  copper-based  friction  和磨损性能研究[J]. 哈尔滨工业大学学报, 2003, 35(4): 441–446].
                 materials[J].  Tribology  International,  2015,  90:  420–425.  doi:  10.  doi: 10.3321/j.issn:0367-6234.2003.04.015.
                 1016/j.triboint.2015.05.003.                  [15]   Chen Yajun, Ma Liuyang, Li Chen, et al. Effect of graphite particle
            [  5  ]   Song Zhanyong, Wang Hongmei, Yu Helong, et al. Preparation and  size  on  tribological  properties  of  copper  matrix  graphite
                 tribological properties of in-situ TiB/attapulgite mineral dual-phase  composites[J]. Journal of Hefei University of Technology (Natural
                 reinforced Ti matrix composites[J]. Tribology, 2024, 44(3): 280–291  Science), 2021, 44(3): 317–321 (in Chinese) [陈亚军, 马刘洋, 李晨,
                 (in Chinese) [宋占永, 王红美, 于鹤龙, 等. 原位TiB/凹凸棒石矿物      等. 石墨粒径大小对铜基石墨复合材料摩擦学性能的影响[J]. 合
                 双相增强Ti基复合材料的制备及其摩擦学性能[J]. 摩擦学学                    肥工业大学学报(自然科学版), 2021, 44(3): 317–321]. doi: 10.
                 报 (中 英 文 ),  2024,  44(3):  280–291].  doi:  10.16078/j.tribology.  3969/j.issn.1003-5060.2021.03.005.
                 2022252.                                      [16]   Hou  Baoqiang,  Guo  Haixia,  Zhang  Nanlong,  et  al.  Anisotropic
            [  6  ]   Zhang Peng, Zhang Lin, Wei Dongbin, et al. Effect of graphite type  friction  behavior  of  aligned  and  oriented  graphite  flakes/copper
                 on  the  contact  plateaus  and  friction  properties  of  copper-based  composite[J].  Carbon,  2022,  186:  64–74.  doi:  10.1016/j.carbon.
                 friction  material  for  high-speed  railway  train[J].  Wear,  2019,  2021.09.074.
                 432–433: 202927. doi:10.1016/j.wear.2019.202927.  [17]   Xiao  Jinkun,  Li  Tiantian,  Chen  Juan,  et  al.  Research  progress  on
            [  7  ]   Xu Wenhu, Hu Dong, Xu Zhuoyuan, et al. Synergy between carbon  composition  design  of  Cu-based  friction  materials  for  high-speed
                 fibers and copper-plated graphite on tribological performance of Cu-  trains[J]. Materials Reports, 2023, 37(23): 149–159 (in Chinese) [肖
                 based composites[J]. Wear, 2023, 534: 205159. doi: 10.1016/j.wear.  金坤, 李天天, 陈娟, 等. 高速列车铜基摩擦材料的成分设计研究
                 2023.205159.                                      进展[J]. 材料导报, 2023, 37(23): 149–159]. doi: 10.11896/cldb.
            [  8  ]   Zhan Yongzhong, Zhang Guoding, Zeng Jianmin, et al. Tribological  22030270.
                 characteristics   of   copper   hybrid   composite   at   elevated  [18]   Qu Xuanhui, Zhang Lin, Zhang Peng, et al. Friction performance of
                 temperature[J]. Tribology, 2006, 26(3): 223–227 (in Chinese) [湛永  Cu-based  brake  pad  for  high-speed  railway  trains[J].  Chinese
                 钟, 张国定, 曾建民, 等. SiC和石墨混杂增强铜基复合材料的高温               Journal of Engineering, 2023, 45(3): 389–399 (in Chinese) [曲选辉,
                 摩擦磨损特性研究[J]. 摩擦学学报, 2006, 26(3): 223–227]. doi: 10.  章林, 张鹏, 等. 时速350 km高速列车用铜基闸片材料的摩擦性
                 3321/j.issn:1004-0595.2006.03.007.                能 [J].  工 程 科 学 学 报 ,  2023,  45(3):  389–399].  doi:  10.13374/j.
            [  9  ]   Moustafa S F, El-Badry S A, Sanad A M, et al. Friction and wear of  issn2095-9389.2021.10.20.003.
                 copper–graphite  composites  made  with  Cu-coated  and  uncoated  [19]   Xu  Wenhu,  Xu  Zhuoyuan,  Fu  Chuanjin,  et  al.  Influences  of  CrFe
                 graphite powders[J]. Wear, 2002, 253(7–8): 699–710. doi: 10.1016/  granularity  and  proportion  on  braking  performance  and  dynamic
                 s0043-1648(02)00038-8.                            response  of  Cu-based  pads[J].  Wear,  2023,  530–531:  205043.
            [10]   Zhu J M, Li J W, Liu T, et al. Differences in mechanical behaviors  doi:10.1016/j.wear.2023.205043.
                 and characteristics between natural graphite/copper composites and  [20]   Qin Yongqiang, Tian Yu, Peng Yuqiang, et al. Research status and
                 carbon-coated   graphite/copper   composites[J].   Materials  development  trend  of  preparation  technology  of  ceramic  particle
                 Characterization,  2020,  162:  110195.  doi:  10.1016/j.matchar.2020.  dispersion  strengthened  copper-matrix  composites[J].  Journal  of
                 110195.                                           Alloys and Compounds, 2020, 848: 156475. doi: 10.1016/j.jallcom.
            [11]   Lian Weiqi, Mai Yongjin, Wang Jie, et al. Fabrication of graphene  2020.156475.
                 oxide-Ti 3 AlC 2   synergistically  reinforced  copper  matrix  composites  [21]   Cheng  Yu,  Xiao  Yelong,  Du  Junhua,  et  al.  Size  effect  of  CrFe
                 with  enhanced  tribological  performance[J].  Ceramics  International,  particles on tribological behavior and airborne particle emissions of
                 2019, 45(15): 18592–18598. doi: 10.1016/j.ceramint.2019.06.082.  copper  metal  matrix  composites[J].  Tribology  International,  2023,
            [12]   Zhao  Jianhua,  Li  Pu,  Tang  Qi,  et  al.  Influence  of  metal-coated  183: 108376. doi: 10.1016/j.triboint.2023.108376.
                 graphite  powders  on  microstructure  and  properties  of  the  bronze-  [22]   Xu  Zhuoyuan,  Zhong  Min,  Xu  Wenhu,  et  al.  Effects  of
                 matrix/graphite composites[J]. Journal of Materials Engineering and  aluminosilicate  particles  on  tribological  performance  and  friction
   53   54   55   56   57   58   59   60   61   62   63