Page 58 - 摩擦学学报2025年第4期
P. 58
546 摩擦学学报(中英文) 第 45 卷
[ 2 ] Wu Bi, Zhang Zhenbo, Li Shu. Advances in tribology of aero-engine Performance, 2017, 26(2): 792–801. doi: 10.1007/s11665-016-2495-4.
materials[J]. Tribology, 2023, 43(10): 1099–1117 (in Chinese) [吴 [13] Liu Ben, Zhang Dongqing, Li Xiangfen, et al. Effect of graphite
彼, 张振波, 李曙. 航空发动机材料摩擦学研究进展[J]. 摩擦学学 flakes particle sizes on the microstructure and properties of graphite
报, 2023, 43(10): 1099–1117]. doi: 10.16078/j.tribology.2023226. flakes/copper composites[J]. Journal of Alloys and Compounds,
[ 3 ] Bonthula S, Bonthula S R, Pothu R, et al. Recent advances in 2018, 766: 382–390. doi: 10.1016/j.jallcom.2018.06.129.
copper-based materials for sustainable environmental [14] Jin Yongping, Guo Bin, Zheng Ailong, et al. Resistivity and
applications[J]. Sustainable Chemistry, 2023, 4(3): 246–271. doi: 10. abrasion performance of copper matrix pantograph slider samples[J].
3390/suschem4030019. Journal of Harbin Institute of Technology, 2003, 35(4): 441–446 (in
[ 4 ] Su Linlin, Gao Fei, Han Xiaoming, et al. Effect of copper powder Chinese) [金永平, 郭斌, 郑艾龙, 等. 铜基受电弓滑板试件电阻率
third body on tribological property of copper-based friction 和磨损性能研究[J]. 哈尔滨工业大学学报, 2003, 35(4): 441–446].
materials[J]. Tribology International, 2015, 90: 420–425. doi: 10. doi: 10.3321/j.issn:0367-6234.2003.04.015.
1016/j.triboint.2015.05.003. [15] Chen Yajun, Ma Liuyang, Li Chen, et al. Effect of graphite particle
[ 5 ] Song Zhanyong, Wang Hongmei, Yu Helong, et al. Preparation and size on tribological properties of copper matrix graphite
tribological properties of in-situ TiB/attapulgite mineral dual-phase composites[J]. Journal of Hefei University of Technology (Natural
reinforced Ti matrix composites[J]. Tribology, 2024, 44(3): 280–291 Science), 2021, 44(3): 317–321 (in Chinese) [陈亚军, 马刘洋, 李晨,
(in Chinese) [宋占永, 王红美, 于鹤龙, 等. 原位TiB/凹凸棒石矿物 等. 石墨粒径大小对铜基石墨复合材料摩擦学性能的影响[J]. 合
双相增强Ti基复合材料的制备及其摩擦学性能[J]. 摩擦学学 肥工业大学学报(自然科学版), 2021, 44(3): 317–321]. doi: 10.
报 (中 英 文 ), 2024, 44(3): 280–291]. doi: 10.16078/j.tribology. 3969/j.issn.1003-5060.2021.03.005.
2022252. [16] Hou Baoqiang, Guo Haixia, Zhang Nanlong, et al. Anisotropic
[ 6 ] Zhang Peng, Zhang Lin, Wei Dongbin, et al. Effect of graphite type friction behavior of aligned and oriented graphite flakes/copper
on the contact plateaus and friction properties of copper-based composite[J]. Carbon, 2022, 186: 64–74. doi: 10.1016/j.carbon.
friction material for high-speed railway train[J]. Wear, 2019, 2021.09.074.
432–433: 202927. doi:10.1016/j.wear.2019.202927. [17] Xiao Jinkun, Li Tiantian, Chen Juan, et al. Research progress on
[ 7 ] Xu Wenhu, Hu Dong, Xu Zhuoyuan, et al. Synergy between carbon composition design of Cu-based friction materials for high-speed
fibers and copper-plated graphite on tribological performance of Cu- trains[J]. Materials Reports, 2023, 37(23): 149–159 (in Chinese) [肖
based composites[J]. Wear, 2023, 534: 205159. doi: 10.1016/j.wear. 金坤, 李天天, 陈娟, 等. 高速列车铜基摩擦材料的成分设计研究
2023.205159. 进展[J]. 材料导报, 2023, 37(23): 149–159]. doi: 10.11896/cldb.
[ 8 ] Zhan Yongzhong, Zhang Guoding, Zeng Jianmin, et al. Tribological 22030270.
characteristics of copper hybrid composite at elevated [18] Qu Xuanhui, Zhang Lin, Zhang Peng, et al. Friction performance of
temperature[J]. Tribology, 2006, 26(3): 223–227 (in Chinese) [湛永 Cu-based brake pad for high-speed railway trains[J]. Chinese
钟, 张国定, 曾建民, 等. SiC和石墨混杂增强铜基复合材料的高温 Journal of Engineering, 2023, 45(3): 389–399 (in Chinese) [曲选辉,
摩擦磨损特性研究[J]. 摩擦学学报, 2006, 26(3): 223–227]. doi: 10. 章林, 张鹏, 等. 时速350 km高速列车用铜基闸片材料的摩擦性
3321/j.issn:1004-0595.2006.03.007. 能 [J]. 工 程 科 学 学 报 , 2023, 45(3): 389–399]. doi: 10.13374/j.
[ 9 ] Moustafa S F, El-Badry S A, Sanad A M, et al. Friction and wear of issn2095-9389.2021.10.20.003.
copper–graphite composites made with Cu-coated and uncoated [19] Xu Wenhu, Xu Zhuoyuan, Fu Chuanjin, et al. Influences of CrFe
graphite powders[J]. Wear, 2002, 253(7–8): 699–710. doi: 10.1016/ granularity and proportion on braking performance and dynamic
s0043-1648(02)00038-8. response of Cu-based pads[J]. Wear, 2023, 530–531: 205043.
[10] Zhu J M, Li J W, Liu T, et al. Differences in mechanical behaviors doi:10.1016/j.wear.2023.205043.
and characteristics between natural graphite/copper composites and [20] Qin Yongqiang, Tian Yu, Peng Yuqiang, et al. Research status and
carbon-coated graphite/copper composites[J]. Materials development trend of preparation technology of ceramic particle
Characterization, 2020, 162: 110195. doi: 10.1016/j.matchar.2020. dispersion strengthened copper-matrix composites[J]. Journal of
110195. Alloys and Compounds, 2020, 848: 156475. doi: 10.1016/j.jallcom.
[11] Lian Weiqi, Mai Yongjin, Wang Jie, et al. Fabrication of graphene 2020.156475.
oxide-Ti 3 AlC 2 synergistically reinforced copper matrix composites [21] Cheng Yu, Xiao Yelong, Du Junhua, et al. Size effect of CrFe
with enhanced tribological performance[J]. Ceramics International, particles on tribological behavior and airborne particle emissions of
2019, 45(15): 18592–18598. doi: 10.1016/j.ceramint.2019.06.082. copper metal matrix composites[J]. Tribology International, 2023,
[12] Zhao Jianhua, Li Pu, Tang Qi, et al. Influence of metal-coated 183: 108376. doi: 10.1016/j.triboint.2023.108376.
graphite powders on microstructure and properties of the bronze- [22] Xu Zhuoyuan, Zhong Min, Xu Wenhu, et al. Effects of
matrix/graphite composites[J]. Journal of Materials Engineering and aluminosilicate particles on tribological performance and friction