Page 78 - 《摩擦学学报》2021年第5期
P. 78

第 5 期             林国志, 等: 表面微织构对WC-8Co在往复摩擦磨损中粘结-扩散磨损特性的影响                                   667



                                P                                                     P
                           Sliding direction                                     Sliding direction
                Ti6Al4V sphere                                        Ti6Al4V sphere
                                                                                              Ti6Al4V debris
                 Micro-groove          Convex region                Scattered adhesion        trapped in the
                                       Ti6Al4V debris
                    WC grain                                              WC grain            interface
                                       captured by the
                   Co binder           micro-groove                       Co binder

                                P                                                     P
                           Sliding direction                                     Sliding direction
                Ti6Al4V sphere          Slight adhesion               Ti6Al4V sphere
                 Micro-groove           on the convex region                                  Severe adhesion
                                                                                              on the surface
                    WC grain            Filling/adhering layer            WC grain
                   Co binder                                              Co binder

                                (a)                                                  (b)

              Fig. 14  The schematic illustration of the adhesion formation process on (a) the textured WC-8Co and, (b) the untextured WC-8Co
                                   图 14    (a)织构WC-8Co和(b)无织构WC-8Co上粘结形成过程示意图


                           Low normal contact load                         Low normal contact load
                              Sliding direction                               Sliding direction
                   Ti6Al4V sphere                                 Ti6Al4V sphere
                                          Slighter breakage on the                        Pull-out of the
               Filling/adhesive layer                              Adhesive layer
                                          micro-groove edge                               WC grain, and
                      WC grain                                        WC grain            deterioration
                      Co binder                                       Co binder           of the surface

                                   P                                              P
                               Sliding direction                              Sliding direction
                   Ti6Al4V sphere                                 Ti6Al4V sphere
                Filling/adhesive layer    Element diffusion of the  Adhesive layer        Element diffusion
                                          Co binder                                       of the Co binder
                       WC grain                                       WC grain
                                          WC grain growth in the
                       Co binder          vicinity of micro-groove    Co binder
                           High normal contact load                        High normal contact load
                               Sliding direction                              Sliding direction
                    Ti6Al4V sphere                                Ti6Al4V sphere
                Filling/adhesive layer     Severe breakage on the  Adhesive layer         Pull-out of the WC
                                           micro-groove edge, and                         grain, and serious
                       WC grain            spalling of the substrate  WC grain            destruction of the
                       Co binder           materials                  Co binder           surface

                                   (a)                                            (b)

                   Fig. 15  Schematic illustration of the wear mechanisms of (a) the textured WC-8Co, and (b) the untextured WC-8Co
                                    图 15    (a)织构WC-8Co和(b)无织构WC-8Co的磨损机理示意图
            度都有重要影响,严重的粘结会导致较高的摩擦系数                            高热载荷和机械应力集中,以及粘结剂Co扩散的协同

            和摩擦温度. 然而,WC-8Co上的微沟槽可以在接触面                        效应. 而无织构WC-8Co磨损的特征是摩擦表面的直
            起到抗粘结作用,并且在高接触载荷下这种效果更加                            接恶化,由基体与粘结层之间的元素扩散加剧导致.
            明显. 织构表面的抗粘结机制归因于微沟槽对碎屑的
                                                               参 考 文 献
            收纳作用.
                                                               [  1  ]  Liu Xin, Liang Liang, Xu Xuan, et al. Reciprocating wear behavior
                c. 在往复式摩擦磨损试验中,织构WC-8Co表面
                                                                   of  WC-10Ni 3 Al  cermet  in  contact  with  Ti 6 Al 4 V[J].  Wear,  2014,
            的磨损最初源自微沟槽边缘的断裂,随后扩展到摩擦
                                                                   321(30): 16–24. doi: 10.1016/j.wear.2014.09.009.
            表面. 此外,织构WC-8Co上的微沟槽还减轻了往复滑
                                                               [  2  ]  Kumar  B  V  M,  Kumar  J  R,  Basu  B.  Crater  wear  mechanisms  of
            动过程中凸区的粘结-扩散磨损.                                        TiCN-Ni-WC  cermets  during  dry  machining[J].  International
                d. 织构WC-8Co的磨损特性归因于微沟槽边缘的                          Journal  of  Refractory  Metals  and  Hard  Materials,  2007,  25(5-6):
   73   74   75   76   77   78   79   80   81   82   83