Page 145 - 《摩擦学学报》2021年第3期
P. 145
434 摩 擦 学 学 报 第 41 卷
Zircaloy-4 and M5®[J]. Journal of Nuclear Materials, 2015, 467: [40] Jiang H, Duan Z, zhang B, et al. Fretting wear behaviors of Zr-4
785–801. doi: 10.1016/j.jnucmat.2015.10.009. alloy under different ions irradiation conditions[J]. Tribology
[29] Iqbal M, Akhter J I, Zhang H F, et al. Synthesis and characterization International, 2020, 152: 106553. doi: 10.1016/j.triboint.2020.
of bulk amorphous steels[J]. Journal of Non-Crystalline Solids, 106553.
2008, 354(28): 3284–3290. doi: 10.1016/j.jnoncrysol.2008.02.009. [41] Wang Peng, Chai Liqiang, Zhao Xiaoyu, et al. Friction, wear and
[30] Tournadre L, Onimus F, Béchade J L, et al. Experimental study of lubrication in nuclear environments[J]. Tribology, 2020, 40(4):
the nucleation and growth of c-component loops under charged 489–503 (in Chinese) [王鹏, 柴利强, 赵晓宇, 等. 核环境下的摩
particle irradiations of recrystallized Zircaloy-4[J]. Journal of 擦 、 磨 损 与 润 滑 [J]. 摩 擦 学 学 报 , 2020, 40(4): 489–503]. doi:
Nuclear Materials, 2012, 425(1-3): 76–82. doi: 10.1016/j.jnucmat. 10.16078/j.tribology.2020071.
2011.11.061. [42] Song Lijun, Liu Feihua, Li Chengtao, et al. Effect of B-Li water
[31] Shen Huahai. Radiation damage and helium bubble evolution in A chemistry on corrosion of metal materials of nuclear power plant[J].
zirconium alloy[D]. Chengdu: University of Electronic Science and Nuclear Science and Engineering, 2014, 34(1): 97–101+115
Technology of China, 2015 (in Chinese) [申华海. 锆合金带电离子 (in Chinese) [宋利君, 刘飞华, 李成涛, 等. B-Li水化学对核电站金
辐照效应及氦泡演化行为研究[D]. 成都: 电子科技大学, 2015]. 属材料腐蚀的影响[J]. 核科学与工程, 2014, 34(1): 97–101+115].
[32] Zhang Chonghong. Damage production by inert-gas-ion irradiation [43] Sridharan K. Understanding how materials corrode in nuclear
in some candidate materials to fusion reactors[J]. Nuclear Physics reactors[J]. Advanced Materials & Processes, 2014, 172(1): 17–20.
Review, 2006, (2): 167–169 (in Chinese) [张崇宏. 聚变堆候选金属 [44] Wei Kejian, Xue Wenbin, Qu Yao, et al. Advance in microarc
材料的惰性气体离子辐照损伤的研究[J]. 原子核物理评论, 2006, oxidation surface treatment on Zr[J]. Surface Technology, 2019,
(2): 167–169]. doi: 10.3969/j.issn.1007-4627.2006.02.019. 48(7): 11–23 (in Chinese) [魏克俭, 薛文斌, 曲尧, 等. 锆微弧氧化
[33] Neogy S, Mukherjee P, Srivastava A P, et al. Proton irradiation of 表面处理技术研究进展[J]. 表面技术, 2019, 48(7): 11–23]. doi:
Zr-1wt.% Nb cladding material: A depth-wise assessment of 10.16490/j.cnki.issn.1001-3660.2019.07.002.
inhomogeneous microstructural damage using X-ray diffraction line [45] Liu J, Mir A H, He G, et al. In-situ TEM study of irradiation-
profile analyses[J]. Journal of Alloys and Compounds, 2015, 640: induced damage mechanisms in monoclinic-ZrO 2 [J]. Acta
175–182. doi: 10.1016/j.jallcom.2015.04.016. Materialia, 2020, 199: 429–442. doi: 10.1016/j.actamat.2020.08.064.
[34] Abromeit C. Aspects of simulation of neutron damage by ion [46] Aidhy D S, Zhang Y, Weber W J. Radiation damage in cubic ZrO 2
irradiation[J]. Journal of Nuclear Materials, 1994, 216: 78–96. doi: and yttria-stabilized zirconia from molecular dynamics
10.1016/0022-3115(94)90008-6. simulations[J]. Scripta Materialia, 2015, 98: 16–19. doi: 10.1016/
[35] Sarkar A, Mukherjee P, Barat P. Characterization of irradiated j.scriptamat.2014.10.036.
microstructure by X-ray diffraction line profile analysis[J]. [47] Ingo G M, Marletta G. Ion beam induced reduction of metallic
Metallurgical and Materials Transactions A, 2008, 39(7): cations in yttria-zirconia[J]. Nuclear Instruments and Methods in
1602–1609. doi: 10.1007/s11661-007-9428-7. Physics Research Section B: Beam Interactions with Materials and
[36] Cao Shuang, Yu Qingkui, Zheng Xuefeng, et al. Failure analysis on Atoms, 1996, 116(1-4): 440–446. doi: 10.1016/0168-583X(96)
leakage current degradation of heavy-ion-irradiated 1200 V silicon 00085-7.
carbide diodes[J]. Equipment Environmental Engineering, 2020, [48] Yeom H, Maier B, Johnson G, et al. Development of cold spray
17(3): 53–58 (in Chinese) [曹爽, 于庆奎, 郑雪峰, 等. 重离子辐照 process for oxidation-resistant FeCrAl and Mo diffusion barrier
TM
1200 V碳化硅二极管漏电退化的缺陷分析[J]. 装备环境工程, coatings on optimized ZIRLO [J]. Journal of Nuclear Materials,
2020, 17(3): 53–58]. 2018, 507: 306–315. doi: 10.1016/j.jnucmat.2018.05.014.
[37] Han J G, Lee J S, Kim W, et al. Zirconium oxide formation and [49] Azevedo C R F. Selection of fuel cladding material for nuclear
surface hardening behavior by nitrogen implantation under oxygen fission reactors[J]. Engineering Failure Analysis, 2011, 18(8):
atmosphere in Zircaloy-4[J]. Surface and Coatings Technology, 1943–1962. doi: 10.1016/j.engfailanal.2011.06.010.
1997, 97(1-3): 492–498. doi: 10.1016/S0257-8972(97)00162-X. [50] Raepsaet C, Bossis P, Hamon D, et al. Quantification and local
[38] Yu Bo. Irradiation effects of low-energy ions on a zirconium distribution of hydrogen within Zircaloy-4 PWR nuclear fuel
alloy[D]. Harbin: Harbin Institute of Technology, 2012 (in Chinese) cladding tubes at the nuclear microprobe of the Pierre Süe
[禹博. 锆基合金低能离子辐照效应研究[D]. 哈尔滨: 哈尔滨工业 Laboratory from μ-ERDA[J]. Nuclear Instruments and Methods in
大学, 2012]. Physics Research Section B: Beam Interactions With Materials and
[39] Zhang Hongpeng. Effects of charged particles irradiation on Atoms, 2008, 266(10): 2424–2428. doi: 10.1016/j.nimb.2008.03.
microstructure and properties of Zr-702[D]. Harbin: Harbin Institute 041.
of Technology, 2011 (in Chinese) [张宏鹏. 带电粒子辐照对Zr- [51] Ni N, Lozano-Perez S, Jenkins M L, et al. Porosity in oxides on
702组织和性能的影响[D]. 哈尔滨: 哈尔滨工业大学, 2011]. zirconium fuel cladding alloys, and its importance in controlling