Page 146 - 《摩擦学学报》2021年第3期
P. 146
第 3 期 江海霞, 等: 核反应堆中锆合金包壳及其表面涂层的微动磨损行为研究进展 435
oxidation rates[J]. Scripta Materialia, 2010, 62(8): 564–567. doi: [63] Idarraga-Trujillo I, Flem M, Brachet J-C, et al. Assessment at CEA
10.1016/j.scriptamat.2009.12.043. of coated nuclear fuel cladding for LWRs with increasing margins in
[52] Massey C P, Terrani K A, Dryepondt S N, et al. Cladding burst LOCA and beyond LOCA conditions [M]. In LWR Fuel
behavior of Fe-based alloys under LOCA[J]. Journal of Nuclear Performance Meeting / TopFuel 2013. American Nuclear Society.
Materials, 2016, 470: 128–138. doi: 10.1016/j.jnucmat.2015.12.018. 2013: 860–867
[53] Hu X, Terrani K A, Wirth B D, et al. Hydrogen permeation in [64] Dabney T, Johnson G, Yeom H, et al. Experimental evaluation of
FeCrAl alloys for LWR cladding application[J]. Journal of Nuclear cold spray FeCrAl alloys coated zirconium-alloy for potential
Materials, 2015, 461: 282–291. doi: 10.1016/j.jnucmat.2015.02.040. accident tolerant fuel cladding[J]. Nuclear Materials and Energy,
[54] Ott L J, Robb K R, Wang D. Preliminary assessment of accident- 2019, 21: 100715. doi: 10.1016/j.nme.2019.100715.
tolerant fuels on LWR performance during normal operation and [65] Park D J, Kim H G, Jung Y I, et al. Microstructure and mechanical
under DB and BDB accident conditions[J]. Journal of Nuclear behavior of Zr substrates coated with FeCrAl and Mo by cold-
Materials, 2014, 448(1-3): 520–533. doi: 10.1016/j.jnucmat.2013. spraying[J]. Journal of Nuclear Materials, 2018, 504: 261–266. doi:
09.052. 10.1016/j.jnucmat.2018.03.047.
[55] Yang Hongyan, Zhang Ruiqian, Peng Xiaoming, et al. Research [66] Loganathan A, Sahu A, Rudolf C, et al. Multi-scale tribological and
progress regarding surface coating of zirconium alloy cladding[J]. nanomechanical behavior of cold sprayed Ti 2 AlC MAX phase
Surface Technology, 2017, 46(1): 69–77 (in Chinese) [杨红艳, 张瑞 coating[J]. Surface and Coatings Technology, 2018, 334: 384–393.
谦, 彭小明, 等. 锆合金包壳表面涂层研究进展[J]. 表面技术, doi: 10.1016/j.surfcoat.2017.11.067.
2017, 46(1): 69–77]. doi: 10.16490/j.cnki.issn.1001-3660.2017. [67] Maier B R, Garcia-Diaz B L, Hauch B, et al. Cold spray deposition
01.012. of Ti 2 AlC coatings for improved nuclear fuel cladding[J]. Journal of
[56] Pan Xiaolong, Qiu Longshi. Research progress of coating material Nuclear Materials, 2015, 466: 712–717. doi: 10.1016/j.jnucmat.
of accident-tolerant zirconium alloy claddings[J]. New Technology 2015.06.028.
& New Process, 2019, (12): 1–5 (in Chinese) [潘晓龙, 邱龙时. 事 [68] Tang C, Klimenkov M, Jaentsch U, et al. Synthesis and
故容错锆合金包壳涂层材料研究进展[J]. 新技术新工艺, 2019, characterization of Ti 2 AlC coatings by magnetron sputtering from
(12): 1–5]. doi: 10.16635/j.cnki.1003-5311.2019.12.001. three elemental targets and ex-situ annealing[J]. Surface and
[57] Zeng Bo, Fan Hongyuan, Chang Hong, et al. Progress in preparation Coatings Technology, 2017, 309: 445–455. doi: 10.1016/j.surfcoat.
of zirconium alloy cladding surface coatings[J]. Surface 2016.11.090.
Technology, 2019, 48(11): 106–113 (in Chinese) [曾波, 范洪远, 常 [69] Park J H, Kim H G, Park J Y, et al. High temperature steam-
鸿, 等. 锆合金包壳表面涂层的制备进展[J]. 表面技术, 2019, oxidation behavior of arc ion plated Cr coatings for accident tolerant
48(11): 106–113]. doi: 10.16490/j.cnki.issn.1001-3660.2019.11.010. fuel claddings[J]. Surface and Coatings Technology, 2015, 280:
[58] Циркониевые сплавы в атомной знергетике[M]. Beijing: Atomic 256–259. doi: 10.1016/j.surfcoat.2015.09.022.
Press, 1988(in Chinese) [扎依莫夫斯基(ЗаймовскийА.С.)等编 姚 [70] Bischoff J, Delafoy C, Chaari N, et al. Cr-coated cladding
敏智译. 核动力用锆合金[M]. 北京: 原子能出版社, 1988]. development at framatome [C]. Topfuel 2018-Light Water Reactor
[59] Liu Jianzhang. Nuclear structural material [J]. Beijing: Chemical (LWR) Fuel Performance Meeting 2018. Prague, Czech Republic.
Industry Press, 2007 (in Chinese) [刘建章. 核结构材料[J]. 北京: 化 2018: A0152.
学工业出版社, 2007]. [71] Delafoy C, Bischoff J, Larocque J, et al. Benefits of Framatome’s E-
[60] Wang Yu, Chen Le, Chen Huan, et al. Room and high temperature ATF evolutionary solution: Cr-coated cladding with Cr 2 O 3 -doped
tensile properties of Cr coating on zircaloy tubes[J]. Materials fuel[C]. Proceedings of the TopFuel, Prague, Czech Republic,
Protection, 2020, 53(7): 61–66 (in Chinese) [王昱, 陈乐, 陈寰, 等. September 2018.
锆合金管表面Cr涂层的室温与高温拉伸性能研究[J]. 材料保护, [72] Bischoff J, Delafoy C, Vauglin C, et al. AREVA NP ’s enhanced
2020, 53(7): 61–66]. doi: 10.16577/j.cnki.42-1215/tb.2020.07.010. accident-tolerant fuel developments: Focus on Cr-coated M5
[61] Zhang Xipeng. Structure and properties of chromium films cladding[J]. Nuclear Engineering and Technology, 2018, 50(2):
deposited by D.C magnetron sputtering on zircaloy substrate[D]. 223–228. doi: 10.1016/j.net.2017.12.004.
Chengdu: Sichuan University, 2003 (in Chinese) [张西鹏. 锆合金基 [73] Su R, Zhang H, O’Connor D J, et al. Deposition and characterization
体上直流磁控溅射铬膜组织与性能研究[D]. 成都: 四川大学, of Ti 2 AlC MAX phase and Ti 3 AlC thin films by magnetron
2003]. sputtering[J]. Materials Letters, 2016, 179: 194–197. doi:
[62] Cosset F, Contoux G, Celerier A, et al. Deposition of corrosion- 10.1016/j.matlet.2016.05.086.
resistant chromium and nitrogen-doped chromium coatings by [74] Feng Z, Ke P, Wang A. Preparation of Ti 2 AlC MAX phase coating
cathodic magnetron sputtering[J]. Surface and Coatings Technology, by DC magnetron sputtering deposition and vacuum heat
1996, 79(1-3): 25–34. doi: 10.1016/0257-8972(95)02454-9. treatment[J]. Journal of Materials Science & Technology, 2015,