Page 144 - 《摩擦学学报》2021年第3期
P. 144
第 3 期 江海霞, 等: 核反应堆中锆合金包壳及其表面涂层的微动磨损行为研究进展 433
behavior of M5 and zirlo zirconium alloy in high temperature [16] Lee Y H, Kim H K. Fretting wear behavior of a nuclear fuel rod
vapor[J]. Journal of Xi ’an Technological University, 2016, 36(6): under a simulated primary coolant condition[J]. Wear, 2013, 301(1-
473–480 (in Chinese) [高巍, 张娴, 王正品, 等. M5和Zirlo合金高温 2): 569–574. doi: 10.1016/j.wear.2013.01.067.
水 蒸 气 氧 化 行 为 研 究 [J]. 西 安 工 业 大 学 学 报 , 2016, 36(6): [17] Lee Y H, Kim H K. Effect of spring shapes on the variation of
473–480]. doi: 10.16185/j.jxatu.edu.cn.2016.06.008. loading conditions and the wear behaviour of the nuclear fuel rod
[ 4 ] Yan C, Wang R, Wang Y, et al. Effects of ion irradiation on during fretting wear tests[J]. Wear, 2007, 263(1-6): 451–457. doi:
microstructure and properties of zirconium alloys —A review[J]. 10.1016/j.wear.2006.12.071.
Nuclear Engineering and Technology, 2015, 47(3): 323–331. doi: [18] Kim K T. Applicability of out-of-pile fretting wear tests to in-reactor
10.1016/j.net.2014.12.015. fretting wear-induced failure time prediction[J]. Journal of Nuclear
[ 5 ] Agency I.Review of Fuel Failures in Water Cooled Reactors Materials, 2013, 433(1-3): 364–371. doi: 10.1016/j.jnucmat.2012.
(2006 –2015) [M]. Vienna: International Atomic Energy Agency, 10.018.
2019. [19] Winter T C, Neu R W, Singh P M, et al. Fretting wear comparison of
[ 6 ] Blau P J. A multi-stage wear model for grid-to-rod fretting of cladding materials for reactor fuel cladding application[J]. Journal of
nuclear fuel rods[J]. Wear, 2014, 313(1-2): 89–96. doi: 10.1016/ Nuclear Materials, 2018, 508: 505–515. doi: 10.1016/j.jnucmat.2018.
j.wear.2014.02.016. 05.069.
[ 7 ] Wei Xiaowei, Shen Baoluo. Development of research on protective [20] Rubiolo P R, Young M Y. On the factors affecting the fretting-wear
zircaloy cladding in nuclear reactor[J]. Chinese Journal of Rare risk of PWR fuel assemblies[J]. Nuclear Engineering and Design,
Metals, 2002, (4): 304–306 (in Chinese) [魏晓伟, 沈保罗. 核反应 2009, 239(1): 68–79. doi: 10.1016/j.nucengdes.2008.08.021.
堆中防护包壳的研究进展[J]. 稀有金属, 2002, (4): 304–306]. doi: [21] Lee Y H, Kim H K, Jung Y H. Effect of impact frequency on the
10.13373/j.cnki.cjrm.2002.04.017. wear behavior of spring-supported tubes in room and high
[ 8 ] Zhang L, Lai P, Liu Q, et al. Fretting wear behavior of zirconium temperature distilled water[J]. Wear, 2005, 259(1-6): 329–336. doi:
alloy in B-Li water at 300 ℃[J]. Journal of Nuclear Materials, 2018, 10.1016/j.wear.2005.01.019.
499: 401–409. doi: 10.1016/j.jnucmat.2017.12.003. [22] Kim J S, Park S M, Lee Y Z. The effects of wear debris under fluid
[ 9 ] Park J Y, Choi B K, Yoo S J, et al. Corrosion behavior and oxide flow environment on fretting wear mechanism of nuclear fuel
properties of Zr-1.1wt%Nb-0.05wt%Cu alloy[J]. Journal of Nuclear cladding tube supported by supporting grid[J]. Tribology
Materials, 2006, 359(1-2): 59–68. doi: 10.1016/j.jnucmat.2006. Transactions, 2010, 53(3): 452–462. doi: 10.1080/1040200090
07.017. 3420795.
[10] Yang Kai. Impact wear properties and wear mechanism of Zr-4 alloy [23] Lu R Y, Karoutas Z, Sham T L. CASL virtual reactor predictive
tube and Inconel718[D]. Chengdu: Southwest Jiaotong University, simulation: Grid-to-Rod Fretting wear[J]. JOM, 2011, 63(8): 53–58.
2015(in Chinese) [杨凯. Zr-4合金管与Incone1718冲击磨损性能及 doi: 10.1007/s11837-011-0139-6.
损伤机理研究[D]. 成都: 西南交通大学, 2015]. [24] Tang C, Steinbrueck M, Stueber M, et al. Deposition,
[11] Jiang H, Duan Z, Zhao X, et al. Influence of ions irradiation on the characterization and high-temperature steam oxidation behavior of
microstructural evolution, mechanical and tribological properties of single-phase Ti 2 AlC-coated Zircaloy-4[J]. Corrosion Science, 2018,
Zr-4 alloy[J]. Applied Surface Science, 2019, 498: 143821. doi: 135: 87–98. doi: 10.1016/j.corsci.2018.02.035.
10.1016/j.apsusc.2019.143821. [25] Lazarevic S, Lu R Y, Favede C, et al. Investigating grid-to-rod
[12] Jiang H, Duan Z, Zhang B, et al. Wear behavior of zirconium-4 alloy fretting wear of nuclear fuel claddings using a unique autoclave
after different irradiation damage level[J]. Applied Surface Science, fretting rig[J]. Wear, 2018, 412-413: 30–37. doi: 10.1016/j.wear.
2020, 509: 145373. doi: 10.1016/j.apsusc.2020.145373. 2018.06.011.
[13] Zhou Zhongrong, Luo Weili, Liu Jiajun. Recent development in [26] Huang Yongzhong, Zhao Yanli, Xiao Zhong, et al. Study of the
fretting research[J]. Tribology, 1997(3): 272–280 (in Chinese) [周仲 effect of cladding corrosion on grid fretting wear[J]. China Nuclear
荣, 罗唯力, 刘家浚. 微动摩擦学的发展现状与趋势[J]. 摩擦学学 Power, 2019, 12(6): 622–626 (in Chinese) [黄永忠, 赵艳丽, 肖忠,
报, 1997(3): 272–280]. doi: 10.3321/j.issn:1004-0595.1997.03.015. 等. 核燃料棒包壳腐蚀对格架磨蚀的影响研究[J]. 中国核电,
[14] Kim H K, Lee Y H, Lee K H. On the geometry of the fuel rod 2019, 12(6): 622–626].
supports concerning a fretting wear failure[J]. Nuclear Engineering [27] Iqbal M, Qayyum A, Akhter J I. Surface modification of Zr-based
and Design, 2008, 238(12): 3321–3330. doi: 10.1016/j.nucengdes. bulk amorphous alloys by using ion irradiation[J]. Journal of Alloys
2008.08.010. and Compounds, 2011, 509(6): 2780–2783. doi: 10.1016/j.jallcom.
[15] Qu J, Cooley K M, Shaw A H, et al. Assessment of wear coefficients 2010.11.098.
of nuclear zirconium claddings without and with pre-oxidation[J]. [28] Gharbi N, Onimus F, Gilbon D, et al. Impact of an applied stress on
Wear, 2016, 356-357: 17–22. doi: 10.1016/j.wear.2016.02.020. c-component loops under Zr ion irradiation in recrystallized