Page 124 - 《摩擦学学报》2021年第3期
P. 124

第 3 期                 周峰, 等: 两类润滑剂物性参数和摩擦系数的高通量分子动力学计算                                       413

                 (a)                                                 (b)


                   0.001 2                                              0.008
                  Viscosity/(Pa·s)  0.001 1                            Friction coefficient  0.007

                   0.001 0
                   0.000 9
                   0.000 8                                              0.006
                                                                        0.005
                        0                          0                       0                          0
                          2                      2                           2                      2
                            4                 4                                 4                 4
                               6            6                                     6            6
                                 8       8                                          8        8
                                   10  10  Anionic carbon                   Cationic carbon  10  10  Anionic carbon
                                                                                              chain length
                                           chain length
                        Cationic carbon
                                                                             chain length
                         chain length

                    Fig. 13  (a) Viscosity of ionic liquids with different cationic alkyl chain lengths;(b) Friction coefficient of ionic
                                           liquids with different cationic alkyl chain lengths
                 图 13    (a)不同阴阳离子烷基碳链长度时离子液体的黏度;(b)不同阴阳离子烷基碳链长度时离子液体的摩擦系数
                b. 以分子模型库为基础计算了润滑剂密度、热导                            2010, 35(9): 693–701. doi: 10.1557/mrs2010.681.
                                                               [  8  ]  Stucke  D  P,  Crespi  V  H.  Predictions  of  new  crystalline  states  for
            率和黏度三个物性参数以及摩擦系数的两层高通量
                                                                   assemblies of nanoparticles: perovskite analogues and 3-D arrays of
            计算方法,可实现万级并发计算.                                        self-assembled nanowires[J]. Nano Letters, 2003, 3(9): 1183–1186.
                c. 单个润滑剂分子物性参数的计算结果与实验                             doi: 10.1021/nl034230y.
            值吻合很好,证明了所采用的物性参数计算方法的可                            [  9  ]  Yu L, Zunger A. Identification of potential photovoltaic absorbers
                                                                   based  on  first-principles  spectroscopic  screening  of  materials[J].
            靠性.
                                                                   Physical Review Letters, 2012, 108(6): 068701. doi: 10.1103/physr-
                d. 不同烷基链长离子液体的高通量计算结果中
                                                                   evlett.108.068701.
            物性参数对链长的依赖关系与实验规律吻合很好,表                            [10]  Wang  Shidong,  Wang  Zhao,  Setyawan  W,  et  al.  Assessing  the
            明所提出高通量计算方法具有很好的稳定性和准确性.                               thermoelectric  properties  of  sintered  compounds  via  high-Through
                                                                   put  Ab-Initio  Computations[J].  Physical  Review  X,  2011,  1(2):
            参 考 文 献
                                                                   021012. doi: 10.1103/physrevx.1.021012.
                                                               [11]  Jorgensen  W  L,  Maxwell  D  S,  Tirado-Rives  J.  Development  and
            [  1  ]  Fan  Xiaoli.  Materials  genome  initiative  and  first-principles  high-
                                                                   testing  of  the  OPLS  all-atom  force  field  on  conformational
                 throughput computation[J]. Materials China, 2015, 34(9): 689–695,
                 658 (in Chinese) [范晓丽. 材料基因组计划与第一性原理高通量           energetics  and  properties  of  organic  liquids[J].  Journal  of  the
                 计算[J]. 中国材料进展, 2015, 34(9): 689–695, 658].        American  Chemical  Society,  1996,  118(45):  11225–11236.  doi:
            [  2  ]  Himanen  L,  Geurts  A,  Foster  A  S,  et  al.  Data-driven  materials  10.1021/ja9621760.
                 science: status, challenges, and perspectives[J]. Advanced Science,  [12]  Dodda L S, Vilseck J Z, Tirado-Rives J, et al. 1.14*CM1A-LBCC:
                 2019, 6(21): 1900808. doi: 10.1002/advs.201900808.  localized bond-charge corrected CM1A charges for condensed-phase
            [  3  ]  Setyawan  W,  Gaume  R  M,  Lam  S,  et  al.  High-throughput  simulations[J]. The Journal of Physical Chemistry B, 2017, 121(15):
                 combinatorial  database  of  electronic  band  structures  for  inorganic  3864–3870. doi: 10.1021/acs.jpcb.7b00272.
                 scintillator  materials[J].  ACS  Combinatorial  Science,  2011,  13(4):  [13]  Plimpton  S.  Fast  parallel  algorithms  for  short-range  molecular
                 382–390. doi: 10.1021/co200012w.                  dynamics[J]. Journal of Computational Physics, 1995, 117(1): 1–19.
            [  4  ]  Setyawan W, Curtarolo S. High-throughput electronic band structure  doi: 10.1006/jcph.1995.1039.
                 computations:  Challenges  and  tools[J].  Computational  Materials  [14]  Müller-Plathe  F.  A  simple  nonequilibrium  molecular  dynamics
                 Science,  2010,  49(2):  299–312.  doi:  10.1016/j.commatsci.2010.  method  for  calculating  the  thermal  conductivity[J].  The  Journal  of
                 05.010.                                           Chemical  Physics,  1997,  106(14):  6082–6085.  doi:  10.1063/1.473
            [  5  ]  Castelli  I  E,  Olsen  T,  Datta  S,  et  al.  Computational  screening  of  271.
                 perovskite metal oxides for optimal solar light capture[J]. Energy &  [15]  Müller-Plathe  F.  Reversing  the  perturbation  in  nonequilibrium
                 Environmental Science, 2012, 5(2): 5814–5819. doi: 10.1039/C1EE  molecular dynamics: an easy way to calculate the shear viscosity of
                 02717D.                                           fluids[J].  Physical  Review  E,  1999,  59(5):  4894.  doi:  10.1103/
            [  6  ]  Alapati S V, Johnson J K, Sholl D S. Large-scale screening of metal  physreve.59.4894.
                 hydride  mixtures  for  high-capacity  hydrogen  storage  from  first-  [16]  Rodil E, Arce A Jr, Arce A Jr, et al. Measurements of the density,
                 principles  computations[J].  The  Journal  of  Physical  Chemistry  C,  refractive  index,  electrical  conductivity,  thermal  conductivity  and
                 2008, 112(14): 5258–5262. doi: 10.1021/jp800630s.  dynamic viscosity for tributylmethylphosphonium and methylsulfate
            [  7  ]  Ceder G. Opportunities and challenges for first-principles materials  based ionic liquids[J]. Thermochimica Acta, 2018, 664: 81–90. doi:
                 design  and  applications  to  Li  battery  materials[J].  MRS  Bulletin,  10.1016/j.tca.2018.04.007.
   119   120   121   122   123   124   125   126   127   128   129