Page 124 - 《摩擦学学报》2021年第3期
P. 124
第 3 期 周峰, 等: 两类润滑剂物性参数和摩擦系数的高通量分子动力学计算 413
(a) (b)
0.001 2 0.008
Viscosity/(Pa·s) 0.001 1 Friction coefficient 0.007
0.001 0
0.000 9
0.000 8 0.006
0.005
0 0 0 0
2 2 2 2
4 4 4 4
6 6 6 6
8 8 8 8
10 10 Anionic carbon Cationic carbon 10 10 Anionic carbon
chain length
chain length
Cationic carbon
chain length
chain length
Fig. 13 (a) Viscosity of ionic liquids with different cationic alkyl chain lengths;(b) Friction coefficient of ionic
liquids with different cationic alkyl chain lengths
图 13 (a)不同阴阳离子烷基碳链长度时离子液体的黏度;(b)不同阴阳离子烷基碳链长度时离子液体的摩擦系数
b. 以分子模型库为基础计算了润滑剂密度、热导 2010, 35(9): 693–701. doi: 10.1557/mrs2010.681.
[ 8 ] Stucke D P, Crespi V H. Predictions of new crystalline states for
率和黏度三个物性参数以及摩擦系数的两层高通量
assemblies of nanoparticles: perovskite analogues and 3-D arrays of
计算方法,可实现万级并发计算. self-assembled nanowires[J]. Nano Letters, 2003, 3(9): 1183–1186.
c. 单个润滑剂分子物性参数的计算结果与实验 doi: 10.1021/nl034230y.
值吻合很好,证明了所采用的物性参数计算方法的可 [ 9 ] Yu L, Zunger A. Identification of potential photovoltaic absorbers
based on first-principles spectroscopic screening of materials[J].
靠性.
Physical Review Letters, 2012, 108(6): 068701. doi: 10.1103/physr-
d. 不同烷基链长离子液体的高通量计算结果中
evlett.108.068701.
物性参数对链长的依赖关系与实验规律吻合很好,表 [10] Wang Shidong, Wang Zhao, Setyawan W, et al. Assessing the
明所提出高通量计算方法具有很好的稳定性和准确性. thermoelectric properties of sintered compounds via high-Through
put Ab-Initio Computations[J]. Physical Review X, 2011, 1(2):
参 考 文 献
021012. doi: 10.1103/physrevx.1.021012.
[11] Jorgensen W L, Maxwell D S, Tirado-Rives J. Development and
[ 1 ] Fan Xiaoli. Materials genome initiative and first-principles high-
testing of the OPLS all-atom force field on conformational
throughput computation[J]. Materials China, 2015, 34(9): 689–695,
658 (in Chinese) [范晓丽. 材料基因组计划与第一性原理高通量 energetics and properties of organic liquids[J]. Journal of the
计算[J]. 中国材料进展, 2015, 34(9): 689–695, 658]. American Chemical Society, 1996, 118(45): 11225–11236. doi:
[ 2 ] Himanen L, Geurts A, Foster A S, et al. Data-driven materials 10.1021/ja9621760.
science: status, challenges, and perspectives[J]. Advanced Science, [12] Dodda L S, Vilseck J Z, Tirado-Rives J, et al. 1.14*CM1A-LBCC:
2019, 6(21): 1900808. doi: 10.1002/advs.201900808. localized bond-charge corrected CM1A charges for condensed-phase
[ 3 ] Setyawan W, Gaume R M, Lam S, et al. High-throughput simulations[J]. The Journal of Physical Chemistry B, 2017, 121(15):
combinatorial database of electronic band structures for inorganic 3864–3870. doi: 10.1021/acs.jpcb.7b00272.
scintillator materials[J]. ACS Combinatorial Science, 2011, 13(4): [13] Plimpton S. Fast parallel algorithms for short-range molecular
382–390. doi: 10.1021/co200012w. dynamics[J]. Journal of Computational Physics, 1995, 117(1): 1–19.
[ 4 ] Setyawan W, Curtarolo S. High-throughput electronic band structure doi: 10.1006/jcph.1995.1039.
computations: Challenges and tools[J]. Computational Materials [14] Müller-Plathe F. A simple nonequilibrium molecular dynamics
Science, 2010, 49(2): 299–312. doi: 10.1016/j.commatsci.2010. method for calculating the thermal conductivity[J]. The Journal of
05.010. Chemical Physics, 1997, 106(14): 6082–6085. doi: 10.1063/1.473
[ 5 ] Castelli I E, Olsen T, Datta S, et al. Computational screening of 271.
perovskite metal oxides for optimal solar light capture[J]. Energy & [15] Müller-Plathe F. Reversing the perturbation in nonequilibrium
Environmental Science, 2012, 5(2): 5814–5819. doi: 10.1039/C1EE molecular dynamics: an easy way to calculate the shear viscosity of
02717D. fluids[J]. Physical Review E, 1999, 59(5): 4894. doi: 10.1103/
[ 6 ] Alapati S V, Johnson J K, Sholl D S. Large-scale screening of metal physreve.59.4894.
hydride mixtures for high-capacity hydrogen storage from first- [16] Rodil E, Arce A Jr, Arce A Jr, et al. Measurements of the density,
principles computations[J]. The Journal of Physical Chemistry C, refractive index, electrical conductivity, thermal conductivity and
2008, 112(14): 5258–5262. doi: 10.1021/jp800630s. dynamic viscosity for tributylmethylphosphonium and methylsulfate
[ 7 ] Ceder G. Opportunities and challenges for first-principles materials based ionic liquids[J]. Thermochimica Acta, 2018, 664: 81–90. doi:
design and applications to Li battery materials[J]. MRS Bulletin, 10.1016/j.tca.2018.04.007.