Page 48 - 《摩擦学学报》2021年第1期
P. 48
第 1 期 瞿学炜, 等: 石英添加量对搪瓷涂层微观结构及摩擦磨损性能的影响 45
Direction of movement Direction of movement
(a) (b)
Spalling block Accumulation layer
Spalling block
Creaks
Enamel Pores Enamel
Pores
Steel Steel
Interface Interface
Fig. 9 Schematic diagram of wear mechanism of coating:(a) Coating with high porosity and low pore density,(b) Coating
with low porosity and high pore density
图 9 涂层磨损机理示意图:(a) 高气孔率、低气孔密度涂层,(b) 低气孔率、高气孔密度涂层
b. 随着石英添加质量分散由0%增至12%时,涂层 磊. 油气储运过程中的管道防腐问题研究与分析[J]. 科技创新导
气孔率降低52.6%,平均气孔孔径降低66%,孔隙密度 报, 2011, (12): 57–57]. doi: 10.3969/j.issn.1674-098X.2011.12.045.
增加2.6倍. 其中添加质量分数为8%和12%的涂层因 [ 6 ] Tang F G, Chen G D, Brow R K, et al. Corrosion resistance and
mechanism of steel rebar coated with three types of enamel[J].
具有较高的气孔密度,在磨损表面形成密实的堆积
Corrosion Science, 2012, 59: 157–168.
层,避免了涂层与摩擦对偶的直接接触而显著降低磨
[ 7 ] Zheng D Y, Zhu S L, Wang F H. Oxidation and hot corrosion
损率.
behavior of a novel enamel-Al 2 O 3 composite coating on K38G
c. 添加8%石英的搪瓷涂层内部90.57%气孔孔径 superalloy[J]. Surface and Coatings Technology, 2006, 200(20-21):
集中在10 ~ 30 μm之间,显著增加了涂层摩擦过程中 5931–5936.
裂纹传递时所需的能量势垒,从而对裂纹扩展和磨屑 [ 8 ] Xiong Y M, Zhu S L, Wang F H. Effect of ultrafine enamel coating
转移形成了更强的阻碍作用,涂层更耐磨. on the oxidation and mechanical property of Ti60 alloy[J]. Acta
Metallurgica Sinica, 2004, 40(7): 768–772.
参 考 文 献
[ 9 ] Li X, Wang F H, Li T F, et al. Effect of enamel coating on long-term
[ 1 ] Wang Zhichang, Gas transmission pipeline engineering[M]. Beijing: oxidation of Ti65 alloy[J]. International Journal of Materials and
Petroleum Industry Press, 1999: 1-21(in Chinese). [王志昌. 输气管 Product Technology, 2004, 20(4): 327–334. doi: 10.1504/IJMPT.2004.
道工程[M]. 北京: 石油工业出版社, 1999: 1-21.]. 004267.
[ 2 ] Cai Rui, Wu Peng, Zhao Jinlong, et al. Cause analysis of corrosion [10] Scrinzi E, Rossi S. The aesthetic and functional properties of enamel
failure of a L245 gas gathering pipeline[J]. Surface technology, coatings on steel[J]. Materials and Design, 2010, 31(9): 4138–4146.
2019, 48(5): 58–64 (in Chinese) [蔡锐, 吴鹏, 赵金龙, 等. 某L245集 doi: 10.1016/j.matdes.2010.04.030.
输管道腐蚀失效原因分析[J]. 表面技术, 2019, 48(5): 58–64]. [11] Hutchings I, Shipway P. Tribology: friction and wear of engineering
[ 3 ] Li Zhao, Wang Ling, Liu Jie, et al. Study on galvanic corrosion of materials[M]. London: Butterworth-Heinemann Press, 2017: 24-38.
carbon steel and copper alloy in seawater under epoxy coating by [12] Pagliuca S, Faust W D. Porcelain (Vitreous) enamels and industrial
WBE and EIS technology[J]. Surface Technology, 2019(6): enamelling processes-the preparation, application and properties of
299–305 (in Chinese) [李钊, 王玲, 刘杰, 等. 结合WBE与EIS技术 enamels[M]. Italy: Mantova Press, 2011: 191-223.
研究环氧涂层下碳钢与铜合金在海水中的电偶腐蚀[J]. 表面技 [13] Mckinley K, Evele H, Baldwin C. Analysis of fracture in porcelain
术, 2019(6): 299–305]. enamels[C]. In: International Enamellers Congress’ 22th Inter Conf
[ 4 ] Liu Shuan, Jiang Xin, Zhao Haichao, et al. Study on wear resistance on Enamel Coating. Cologne, Germany, 2012, 40-45.
and corrosion resistance of graphene epoxy coating[J]. Journal of [14] Rossi S, Fedel M, Deflorian F, et al. Abrasion and chemical
Tribology, 2015, 35(5): 598–605 (in Chinese) [刘栓, 姜欣, 赵海超, resistance of composite vitreous enamel coatings with hard
等. 石墨烯环氧涂层的耐磨耐蚀性能研究[J]. 摩擦学学报, 2015, particles[J]. Surface and Interface Analysis, 2016, 48(8): 827–837.
35(5): 598–605]. doi: 10.16078/j.tribology.2015.05.012. doi: 10.1002/sia.5849.
[ 5 ] Shi Lei. Research and analysis of pipeline anticorrosion in the [15] Rossi S, Calovi M, Velez D, et al. Influence of addition of hard
process of oil and gas storage and transportation[J]. Science and particles on the mechanical and chemical behavior of vitreous
Technology Innovation Guide, 2011, (12): 57–57 (in Chinese) [石 enamel[J]. Surface and Coatings Technology, 2019, 357: 69–77. doi: