Page 70 - 《摩擦学学报》2020年第6期
P. 70

第 6 期       沈明学, 等: 表面机械滚压处理(SMRT)316L不锈钢梯度纳米层在腐蚀介质下的摩擦学行为研究                                 753

                 301–309. doi: 10.1016/j.matchemphys.2010.11.022.  alloy by surface nanocrystallization for elevated resistance to wear
            [  7  ]  Lou S H, Li Y H, Zhou L C, et al. Surface nanocrystallization of  and corrosive wear[J]. Tribology International, 2017, 111: 211–219.
                 metallic alloys with different stacking fault energy induced by laser  doi: 10.1016/j.triboint.2017.03.009.
                 shock processing[J]. Materials & Design, 2016, 104: 320–326.  [16]  Yuan Junrui, Xu Jia, Zhou Zhenyu, et al. Study on wear behavior of
            [  8  ]  Xin  Chao,  Yang  Dan,  Sun  Qiaoyan,  et  al.  Thermal  stability  of  gradient nanocrystalline structure on pure copper surface induced by
                 nanogradient microstructure produced by surface mechanical rolling  burnishing[J].  Journal  of  Mechanical  Engineering,  2017,  53(24):
                 treatment  in  Zircaloy-4[J].  Journal  of  Materials  Science,  2019,  49–54 (in Chinese) [袁俊瑞, 徐佳, 周振宇, 等. 滚压诱导纯铜表面
                 55(11): 4926–4939.
                                                                   梯度纳米结构磨损行为研究[J]. 机械工程学报, 2017, 53(24):
            [  9  ]  Carneiro  Luiz,  Wang  Xiaogui,  Jiang  Yanyao.  Cyclic  deformation
                                                                   49–54]. doi: 10.3901/JME.2017.24.049.
                 and  fatigue  behavior  of  316L  stainless  steel  processed  by  surface
                                                               [17]  Yang  Shiting,  Xing  Yongming,  Jiang  Aifeng,  et  al.  Effects  of
                 mechanical  rolling  treatment[J].  International  Journal  of  Fatigue,
                                                                   surface  nan0crystallizati0n  stainless  on  dry  friction  properties  of
                 2020, 134: 105469. doi: 10.1016/j.ijfatigue.2019.105469.
                                                                   316L  steel[J].  Surface  Technology,  2016,  45(10):  70–76
            [10]  R  K  Gupta,  N  Birbilis.  The  influence  of  nanocrystalline  structure
                                                                   (in Chinese) [杨诗婷, 邢永明, 姜爱峰, 等. 表面纳米化对316L不锈
                 and  processing  route  on  corrosion  of  stainless  steel:  A  review[J].
                                                                   钢干摩擦性能的影响[J]. 表面技术, 2016, 45(10): 70–76].
                 Corrosion  Science,  2015,  92:  1–15.  doi:  10.1016/j.corsci.2014.
                                                               [18]  Fu  Licai,  Tan  Pin,  Zhu  Jiajun,  et  al.  Tribological  properties  of
                 11.041.
                                                                   surface  nanocrystalline  martensite  steel  in  vacuum[J].  Tribology
            [11]  Cui Zeqin, Qin Zhen, Dong Peng, et al. Microstructure and corrosion
                                                                   International,  2017,  109:  246–251.  doi:  10.1016/j.triboint.2016.
                 properties of FeCoNiCrMn high entropy alloy coatings prepared by
                                                                   12.054.
                 high speed laser cladding and ultrasonic surface mechanical rolling
                                                               [19]  Wang P F, Han Z, Lu Ke. Enhanced tribological performance of a
                 treatment[J].  Materials  Letters,  2020,  259:  126769.  doi:  10.1016/
                                                                   gradient  nanostructured  interstitial-free  steel[J].  Wear,  2018,  402-
                 j.matlet.2019.126769.
                                                                   403: 100–108. doi: 10.1016/j.wear.2018.02.010.
            [12]  Wang  S  G,  Sun  M,  Liu  S  Y,  et  al.  Synchronous  optimization  of
                                                               [20]  E  Huttunen-Saarivirta,  L  Kilpi,  T  J  Hakala,  et  al.  Tribocorrosion
                 strengths, ductility and corrosion resistances of bulk nanocrystalline
                                                                   study  of  martensitic  and  austenitic  stainless  steels  in  0.01M  NaCl
                 304 stainless steel[J]. Journal of Materials Science & Technology,
                                                                   solution[J].  Tribology  International,  2016,  95:  358–371.  doi:
                 2020, 37: 161–172.
                                                                   10.1016/j.triboint.2015.11.046.
            [13]  Y  Sun.  Sliding  wear  behaviour  of  surface  mechanical  attrition
                                                               [21]  T Roland, D Retraint, K Lu, et al. Fatigue life improvement through
                 treated AISI 304 stainless steel[J]. Tribology International, 2013, 57:
                                                                   surface  nanostructuring  of  stainless  steel  by  means  of  surface
                 67–75. doi: 10.1016/j.triboint.2012.07.015.
            [14]  S  Anand  Kumar,  S  Ganesh  Sundara  Raman,  T  S  N  Sankara  mechanical  attrition  treatment[J].  Scripta  Materialia,  2006,  54(11):
                 Narayanan, et al. Influence of counterbody material on fretting wear  1949–1954. doi: 10.1016/j.scriptamat.2006.01.049.
                 behaviour  of  surface  mechanical  attrition  treated  Ti –6Al –4V[J].  [22]  Sun  Haiqing,  Shi  Yinong,  Zhang  M  X.  Sliding  wear-induced
                 Tribology International, 2013, 57: 107–114. doi: 10.1016/j.triboint.  microstructure  evolution  of  nanocrystalline  and  coarse-grained
                 2012.07.021.                                      AZ91D Mg alloy[J]. Wear, 2009, 266(7−8): 666–670. doi: 10.1016/
            [15]  M Nouri, D Y Li. Maximizing the benefit of aluminizing to AZ31  j.wear.2008.08.004.
   65   66   67   68   69   70   71   72   73   74   75