Page 70 - 《摩擦学学报》2020年第6期
P. 70
第 6 期 沈明学, 等: 表面机械滚压处理(SMRT)316L不锈钢梯度纳米层在腐蚀介质下的摩擦学行为研究 753
301–309. doi: 10.1016/j.matchemphys.2010.11.022. alloy by surface nanocrystallization for elevated resistance to wear
[ 7 ] Lou S H, Li Y H, Zhou L C, et al. Surface nanocrystallization of and corrosive wear[J]. Tribology International, 2017, 111: 211–219.
metallic alloys with different stacking fault energy induced by laser doi: 10.1016/j.triboint.2017.03.009.
shock processing[J]. Materials & Design, 2016, 104: 320–326. [16] Yuan Junrui, Xu Jia, Zhou Zhenyu, et al. Study on wear behavior of
[ 8 ] Xin Chao, Yang Dan, Sun Qiaoyan, et al. Thermal stability of gradient nanocrystalline structure on pure copper surface induced by
nanogradient microstructure produced by surface mechanical rolling burnishing[J]. Journal of Mechanical Engineering, 2017, 53(24):
treatment in Zircaloy-4[J]. Journal of Materials Science, 2019, 49–54 (in Chinese) [袁俊瑞, 徐佳, 周振宇, 等. 滚压诱导纯铜表面
55(11): 4926–4939.
梯度纳米结构磨损行为研究[J]. 机械工程学报, 2017, 53(24):
[ 9 ] Carneiro Luiz, Wang Xiaogui, Jiang Yanyao. Cyclic deformation
49–54]. doi: 10.3901/JME.2017.24.049.
and fatigue behavior of 316L stainless steel processed by surface
[17] Yang Shiting, Xing Yongming, Jiang Aifeng, et al. Effects of
mechanical rolling treatment[J]. International Journal of Fatigue,
surface nan0crystallizati0n stainless on dry friction properties of
2020, 134: 105469. doi: 10.1016/j.ijfatigue.2019.105469.
316L steel[J]. Surface Technology, 2016, 45(10): 70–76
[10] R K Gupta, N Birbilis. The influence of nanocrystalline structure
(in Chinese) [杨诗婷, 邢永明, 姜爱峰, 等. 表面纳米化对316L不锈
and processing route on corrosion of stainless steel: A review[J].
钢干摩擦性能的影响[J]. 表面技术, 2016, 45(10): 70–76].
Corrosion Science, 2015, 92: 1–15. doi: 10.1016/j.corsci.2014.
[18] Fu Licai, Tan Pin, Zhu Jiajun, et al. Tribological properties of
11.041.
surface nanocrystalline martensite steel in vacuum[J]. Tribology
[11] Cui Zeqin, Qin Zhen, Dong Peng, et al. Microstructure and corrosion
International, 2017, 109: 246–251. doi: 10.1016/j.triboint.2016.
properties of FeCoNiCrMn high entropy alloy coatings prepared by
12.054.
high speed laser cladding and ultrasonic surface mechanical rolling
[19] Wang P F, Han Z, Lu Ke. Enhanced tribological performance of a
treatment[J]. Materials Letters, 2020, 259: 126769. doi: 10.1016/
gradient nanostructured interstitial-free steel[J]. Wear, 2018, 402-
j.matlet.2019.126769.
403: 100–108. doi: 10.1016/j.wear.2018.02.010.
[12] Wang S G, Sun M, Liu S Y, et al. Synchronous optimization of
[20] E Huttunen-Saarivirta, L Kilpi, T J Hakala, et al. Tribocorrosion
strengths, ductility and corrosion resistances of bulk nanocrystalline
study of martensitic and austenitic stainless steels in 0.01M NaCl
304 stainless steel[J]. Journal of Materials Science & Technology,
solution[J]. Tribology International, 2016, 95: 358–371. doi:
2020, 37: 161–172.
10.1016/j.triboint.2015.11.046.
[13] Y Sun. Sliding wear behaviour of surface mechanical attrition
[21] T Roland, D Retraint, K Lu, et al. Fatigue life improvement through
treated AISI 304 stainless steel[J]. Tribology International, 2013, 57:
surface nanostructuring of stainless steel by means of surface
67–75. doi: 10.1016/j.triboint.2012.07.015.
[14] S Anand Kumar, S Ganesh Sundara Raman, T S N Sankara mechanical attrition treatment[J]. Scripta Materialia, 2006, 54(11):
Narayanan, et al. Influence of counterbody material on fretting wear 1949–1954. doi: 10.1016/j.scriptamat.2006.01.049.
behaviour of surface mechanical attrition treated Ti –6Al –4V[J]. [22] Sun Haiqing, Shi Yinong, Zhang M X. Sliding wear-induced
Tribology International, 2013, 57: 107–114. doi: 10.1016/j.triboint. microstructure evolution of nanocrystalline and coarse-grained
2012.07.021. AZ91D Mg alloy[J]. Wear, 2009, 266(7−8): 666–670. doi: 10.1016/
[15] M Nouri, D Y Li. Maximizing the benefit of aluminizing to AZ31 j.wear.2008.08.004.