Page 69 - 《摩擦学学报》2020年第6期
P. 69

752                                     摩   擦   学   学   报                                 第 40 卷


                  S a  0.873 μm                        Z/μm    S a  1.092 μm                        Z/μm
                  S q  1.083 μm                          2     S q  1.286 μm
                  S z  6.435 μm                                S z  6.390 μm                          2
                                                         1                                            1
                                                                                                  400
                                                      400  0                                          0
                                                                          0
                             0                      300  −1                100                  300  −1
                              100
                                                  200                         200              200 Y/μm
                                 200                    −2                                           −2
                                     300        100  Y/μm                     X/μm 300      100
                                 X/μm
                                        400             −3                           400             −3
                                              0                                           0
                                                        −4
                              (a) UnSMRT in water                           (b) SMRT in water
                  S a  1.192 μm                        Z/μm    S a  1.044 μm                        Z/μm
                  S q  1.435 μm                          3     S q  1.250 μm                          3
                  S z  8.959 μm                                S z  7.179 μm
                                                         2                                            2
                                                         1                                            1
                                                      400  0                                       400
                            0                                             0                           0
                                                    300  −1
                              100                       −2                 100                   300  −1
                                200              200    −3                    200              200   −2
                                    300             Y/μm                                          Y/μm
                                               100      −4                   X/μm  300      100      −3
                                X/μm
                                        400             −5                           400
                                             0                                            0          −4
                               (c) UnSMRT in HCl                             (d) SMRT in HCl

                         Fig. 9  3D topographies of the worn surface (Corresponding to Fig. 6(a-b) and 8(a-b) respectively)
                                        图 9    磨损表面的三维形貌(依次对应图6(a-b)和8(a-b))

                                                                                       +
            现出比粗晶基体更优异的抗腐蚀磨损性能.                                    tribological  performance  of  N -implanted  stainless  steel  under
                                                                   lubrication conditions[J]. Tribology, 2019, 39(1): 46–52 (in Chinese)
            3    结论                                                [韩露, 程传杰, 陈晨, 等. 剂量对润滑条件下氮离子注入316L不锈

                                                                   钢摩擦学行为的影响[J]. 摩擦学学报, 2019, 39(1): 46–52].
                a.利用表面机械滚压处理(SMRT)技术在316L不
                                                               [  2  ]  Huang Haiwei, Wang Zhenbo, Lu Jian, et al. Fatigue behaviors of
            锈钢表面成功制备了梯度纳米结构层,厚度达200 μm
                                                                   AISI  316L  stainless  steel  with  a  gradient  nanostructured  surface
            以上,表面硬化层厚度超过1.5 mm,表面硬度提升至
                                                                   layer[J]. Acta Materialia, 2015, 87: 150–160. doi: 10.1016/j.actamat.
            粗晶基体的近2倍.                                              2014.12.057.
                b.梯度纳米结构层由表及里依次为等轴纳米晶                          [  3  ]  F B Saada, Z Antar, K Elleuch, et al. The effect of nanocrystallized
            层、片状孪晶层以及伴随高密度位错层的粗晶层;其                                surface  on  the  tribocorrosion  behavior  of  304L  stainless  steel[J].
            中,最表层等轴晶粒尺寸在30 nm左右. 研究发现纳米                            Wear, 2018, 394-395: 71–79. doi: 10.1016/j.wear.2017.10.007.
            硬度随深度分布并非广为认知的单调递减,而是受表                            [  4  ]  V Pandey, J K Singh, K Chattopadhyay, et al. Influence of ultrasonic
                                                                   shot  peening  on  corrosion  behavior  of  7075  aluminum  alloy[J].
            层材料微观组织结构影响.
                                                                   Journal  of  Alloys  and  Compounds,  2017,  723:  826–840.  doi:
                c.与粗晶基体的严重点蚀不同,SMRT加工获得
                                                                   10.1016/j.jallcom.2017.06.310.
            的纳米结构表面能有效抵抗表面腐蚀;尽管SMRT对
                                                               [  5  ]  Wang Shaojie, Han Jing, Han Yuejiao, et al. Effects of surface nano-
            降低摩擦系数影响不大,但它能大大减缓材料磨损,
                                                                   crystallization on microstructure and properties of 304 stainless steel
            与基体试样相比,SMRT试样在腐蚀介质下减摩效果                               carburized layer[J]. China Surface Engineering, 2017, 30(3): 25–30
            比纯水环境更明显,且在腐蚀环境下表现出优异的耐                                (in Chinese) [王少杰, 韩靖, 韩月娇, 等. 表面纳米化对304不锈钢
            腐蚀性能,其磨损机制由处理前伴随严重剥落特征的                                渗碳层组织和性能的影响[J]. 中国表面工程, 2017, 30(3): 25–30].
            疲劳磨损和磨粒磨损转变为轻微疲劳磨损.                                    doi: 10.11933/j.issn.1007-9289.20161027003.
                                                               [  6  ]  Wen Lei, Wang Yaming, Zhou Y, et al. Iron-rich layer introduced
            参 考 文 献
                                                                   by SMAT and its effect on corrosion resistance and wear behavior of
            [  1  ]  Han  Lu,  Cheng  Chuanjie,  Chen  Chen,  et  al.  Effect  of  dose  on  2024 Al alloy[J]. Materials Chemistry and Physics, 2011, 126(1-2):
   64   65   66   67   68   69   70   71   72   73   74