Page 131 - 《摩擦学学报》2020年第5期
P. 131

686                                     摩   擦   学   学   报                                 第 40 卷

                 triboelectric  nanogenerator  networks[J].  Nano  Energy,  2017,  39:  (in Chinese) [邱宇, 裴俊乐, 杨德超, 等. 基于 COMSOL 模拟的球
                 9–23. doi: 10.1016/j.nanoen.2017.06.035.          形摩擦纳米发电机的发电特性[J]. 物理实验, 2017, 37(9): 1–5].
            [  6  ]  Khandelwal G, Chandrasekhar A, Alluri N R, et al. Trash to energy:  doi: 10.3969/j.issn.1005-4642.2017.09.001.
                 A  facile,  robust  and  cheap  approach  for  mitigating  environment  [14]  Zi  Y,  Guo  H,  Wen  Z,  et  al.  Harvesting  low-frequency  (<5  Hz)
                 pollutant  using  household  triboelectric  nanogenerator[J].  Applied  irregular  mechanical  energy:  A  possible  killer  application  of
                 Energy, 2018, 219: 338–349. doi: 10.1016/j.apenergy.2018.03.031.  triboelectric nanogenerator[J]. ACS Nano, 2016, 10(4): 4797–4805.
            [  7  ]  Liang X, Jiang T, Liu G, et al. Spherical triboelectric nanogenerator
                                                                   doi: 10.1021/acsnano.6b01569.
                 integrated  with  power  management  module  for  harvesting
                                                               [15]  Zou H, Zhang Y, Guo L, et al. Quantifying the triboelectric series[J].
                 multidirectional  water  wave  energy[J].  Energy  &  Environmental
                                                                   Nature  Communications,  2019,  10(1):  1427.  doi:  10.1038/s41467-
                 Science, 2020.
                                                                   019-09461-x.
            [  8  ]  Xiao  T  X,  Liang  X,  Jiang  T,  et  al.  Spherical  triboelectric
                                                               [16]  Wang S, Xie Y, Niu S, et al. Freestanding triboelectric-layer-based
                 nanogenerators based on spring‐assisted multilayered structure for
                                                                   nanogenerators  for  harvesting  energy  from  a  moving  object  or
                 efficient  water  wave  energy  harvesting[J].  Advanced  Functional
                                                                   human  motion  in  contact  and  non-contact  modes[J].  Advanced
                 Materials, 2018, 28(35): 1802634. doi: 10.1002/adfm.201802634.
                                                                   Materials, 2014, 26(18): 2818–2824. doi: 10.1002/adma.201305303.
            [  9  ]  Yang  Y,  Zhang  H  L,  Liu  R  Y,  et  al.  Fully  enclosed  triboelectric
                                                               [17]  Wang  Z  L.  On  maxwell's  displacement  current  for  energy  and
                 nanogenerators for applications in water and harsh environments[J].
                                                                   sensors:  the  origin  of  nanogenerators[J].  Materials  Today,  2017,
                 Advanced  Energy  Materials,  2013,  3(12):  1563–1568.  doi:
                                                                   20(2): 74–82. doi: 10.1016/j.mattod.2016.12.001.
                 10.1002/aenm.201300376.
                                                               [18]  Tada  Y.  Experimental  characteristics  of  electret  generator,  using
            [10]  Zhang H L, Yang Y, Su Y J, et al. Triboelectric nanogenerator for
                                                                   polymer film electrets[J]. Japanese Journal of Applied Physics Part
                 harvesting  vibration  energy  in  full  space  and  as  self-powered
                                                                   1-Regular  Papers  Short  Notes  &  Review  Papers,  1992,  31(3):
                 acceleration  sensor[J].  Advanced  Functional  Materials,  2014,
                                                                   846–851.
                 24(10): 1401–1407. doi: 10.1002/adfm.201302453.
                                                               [19]  Niu  S  M,  Liu  Y,  Chen  X  Y,  et  al.  Theory  of  freestanding
            [11]  An  J,  Wang  Z  M,  Jiang  T,  et  al.  Whirling-folded  triboelectric
                                                                   triboelectric-layer-based nanogenerators[J]. Nano Energy, 2015, 12:
                 nanogenerator  with  high  average  power  for  water  wave  energy
                                                                   760–774. doi: 10.1016/j.nanoen.2015.01.013.
                 harvesting[J].  Advanced  Functional  Materials,  2019,  29(39):
                                                               [20]  Niu  S  M,  Zhou  Y  S,  Wang  S  H,  et  al.  Simulation  method  for
                 1904867. doi: 10.1002/adfm.201904867.
                                                                   optimizing  the  performance  of  an  integrated  triboelectric
            [12]  Wang  X  F,  Niu  S  M,  Yin  Y  J,  et  al.  Triboelectric  nanogenerator
                 based  on  fully  enclosed  rolling  spherical  structure  for  harvesting  nanogenerator energy harvesting system[J]. Nano Energy, 2014, 8:
                 low-frequency  water  wave  energy[J].  Advanced  Energy  Materials,  150–156. doi: 10.1016/j.nanoen.2014.05.018.
                 2015, 5(24): 1501467. doi: 10.1002/aenm.201501467.  [21]  Zhang  D  H,  Shi  J  W,  Si  Y  L,  et  al.  Multi-grating  triboelectric
            [13]  Qiu  Yu,  Pei  Junle,  Yang  Dechao,  et  al.  Power  generation  nanogenerator for harvesting low-frequency ocean wave energy[J].
                 characteristics  of  spherical  friction  nanogenerators  based  on  Nano  Energy,  2019,  61:  132–140.  doi:  10.1016/j.nanoen.2019.04.
                 COMSOL  simulation[J].  Physics  Experiment,  2017,  37(9):  1–5  046.
   126   127   128   129   130   131   132   133   134   135   136