Page 87 - 《摩擦学学报》2020年第3期
P. 87

第 40 卷     第 3 期                        摩  擦  学  学  报                                 Vol 40   No 3
   2020  年 5  月                                 Tribology                                   May, 2020

   DOI: 10.16078/j.tribology.2019187



         基于载荷谱的凸轮机构关键摩擦副优化研究




                                                       1
                                             1*
                                    2
                           1
                                                                        1
                                                               2
                    王军锋 , 明仕林 , 王晓光 , 曾启文 , 李  严 , 陈光焱 , 蔡振兵                     2*
                            (1. 中国工程物理研究院 电子工程研究所,四川 绵阳 621900;
                                2. 西南交通大学 摩擦学研究所,四川 成都 610031)
       摘   要: 通过台架试验测得凸轮机构的凸轮转动轴在实际工况下的载荷谱. 然后,结合载荷谱和机构几何尺寸进行
       力学分析,得到凸轮轮廓上的载荷分布. 针对机构关键摩擦副在最大载荷附近发生严重磨损的问题,以载荷分布为
       基础,通过UMT摩擦磨损试验机进行模拟机构实际接触情况的试样试验,探究摩擦副材料的摩擦学行为,优化摩擦
       副材料. 结果表明:摩擦副材料的摩擦学行为与其硬度和韧性都有关系,在韧性无较大差别时,硬度较高的材料耐
       磨性较强. 对于硬度较低、韧性较高的材料,摩擦时会在其表面形成黏着层,减缓其进一步磨损,但是摩擦系数较高.
       试验预测在以减缓凸轮转动轴阻力增长为目的下,凸轮、滚子和滚子轴材料分别为TC4、022Cr12Ni9Cu2NbTi和
       07Cr17Ni7Al时,其效果最好. 后经原尺寸机构实际工况试验,验证了预测的正确性.
       关键词: 凸轮机构; 载荷谱; 耐磨性; 磨损机理; 材料优化
       中图分类号: TH112.2                  文献标志码: A                   文章编号: 1004-0595(2020)03–0353–11


              Optimization on Key Friction Pair of Cam Mechanism
                                  Based on Load Spectrum


                               1
                                                              1*
                                                                                    2
                                                                            1
                                            2
                  WANG Junfeng , MING Shilin , WANG Xiaoguang , ZENG Qiwen , LI Yan ,
                                                   1
                                    CHEN Guangyan , CAI Zhenbing 2*
          (1. Institute of Electrical Engineering, China Academy of Engineering Physics, Sichuan Mianyang 621900, China
                2. Tribology Research Institute, Southwest Jiaotong University, Sichuan Chengdu 610031, China)
       Abstract: The load spectrum of a cam mechanism was measured via a bench test. Thereafter,the load distribution along
       the cam profile was obtained by dynamic analysis according to the load spectrum and the mechanism sizes. Aiming at
       the severe abrasion of the cam mechanism key friction pairs at the position near the maximum load,a specific sample
       experiment based on load distribution was conducted on a UMT tribo-test rig to explore the tribological behavior of the
       friction pair materials,and eventually,optimizing friction pair material. The results showed the tribological behaviors of
       these materials were related to their hardness and toughness. For those materials without great extent of toughness
       distinction,their abrasion resistance got stronger as their hardness increased. For the material with lower hardness and
       higher toughness,an adhesion layer on worn surface protected the base material from further abrasion and produced
       higher friction force. According to the experiment,it is predicted that an optimal combination of TC4 as the cam,
       022Cr12Ni9Cu2NbTi as the roller,and 07Cr17Ni7Al as the roller shaft for slowing down the increment of the cam


   Received 17 October 2019, revised 7 November 2019, accepted 27 December 2019, available online 28 May 2020.
   *Corresponding  author.  E-mail:  wxgrain@163.com  (WANG),  Tel:  +86-13881181553;  E-mail:  czb-jiaoda@126.com  (CAI),  Tel:
   +86-15828457775.
   The project was supported by the National Natural Science Foundation of China (U1730131), the Young Scientific Innovation Team
   of Science and Technology of Sichuan (2017TD0017) and the Sichuan Province University Scientific Research Innovation Team
   Project (18TD0005).
   国家自然科学基金项目(U1730131),四川省青年科技创新研究团队项目(2017TD0017)和四川省高校科研创新团队项目
   (18TD0005)资助.
   82   83   84   85   86   87   88   89   90   91   92