Page 63 - 《摩擦学学报》2020年第3期
P. 63

第 3 期                  乔乾, 等: 核废料硼硅酸盐玻璃在酸性溶液环境下的摩擦磨损性能                                       329


       Acta, 2015, 151: 68–85. doi: 10.1016/j.gca.2014.12.009.  101601. doi: 10.1063/1.5019412.
   [  3  ]  Xu Kai. Review of international research progress on nuclear waste  [16]  Sheth  N,  Luo  J,  Banerjee  J,  et  al.  Characterization  of  surface
       vitrification[J]. Materials China, 2016, 35(7): 481–488 (in Chinese)  structures  of  dealkalized  soda  lime  silica  glass  using  X-ray
       [徐凯. 核废料玻璃固化国际研究进展[J]. 中国材料进展, 2016,               photoelectron, specular reflection infrared, attenuated total reflection
       35(7): 481–488].                                   infrared and sum frequency generation spectroscopies[J]. Journal of
   [  4  ]  Qin Aifang, Zhao Xiaolong, Wang Haitang. Coupled thermo-hydro-  Non-Crystalline Solids, 2017, 474: 24–31. doi: 10.1016/j.jnoncrysol.2017.
       mechanical  properties  in  field  near  nuclear  waste  repository[J].  08.009.
       Chinese Journal of Underground Space and Engineering, 2013, 9(5):  [17]  He Hongtu, Yu Jiaxin. Wear properties of soda lime glass in various
       1201–1207 (in Chinese) [秦爱芳, 赵小龙, 王海堂. 核废料处置库      liquid  environments[J].  Journal  of  the  American  Ceramic  Society,
       近场热-水-力耦合性状[J]. 地下空间与工程学报, 2013, 9(5):             2018, 46(1): 45–52 (in Chinese) [何洪途, 余家欣. 钠钙玻璃在不同
       1201–1207].
                                                          液体环境中的磨损性能[J]. 硅酸盐学报, 2018, 46(1): 45–52].
   [  5  ]  Poinssot  C,  Gin  S.  Long-term  behavior  science:  The  cornerstone
                                                     [18]  Tomozawa M. Stress corrosion reaction of silica glass and water[J].
       approach for reliably assessing the long-term performance of nuclear
                                                          Physics and Chemistry of Glasses, 1988, 39: 65–69.
       waste[J].  Journal  of  Nuclear  Materials,  2012,  420:  182 –192.  doi:
                                                     [19]  Zhu B, Xia P, Ho W, et al. Isoelectric point and adsorption activity
       10.1016/j.jnucmat.2011.09.012.
                                                          of porous g-C 3 N 4 [J]. Applied Surface Science, 2015, 344: 188–195.
   [  6  ]  Ledieu  A,  Devreux  F,  Barboux  P,  et  al.  Leaching  of  borosilicate
                                                          doi: 10.1016/j.apsusc.2015.03.086.
       glasses  I  experiments[J].  Journal  of  Non-Crystalline  Solids,  2004,
                                                     [20]  Petermann L, Doren A, Baroux B, et al. Zeta potential measurements
       343: 3–12. doi: 10.1016/j.jnoncrysol.2004.06.006.
                                                          on passive metals[J]. Journal of Colloid and Interface Science, 1995,
   [  7  ]  Gin S, Beaudoux X, Angeli F, et al. Effect of composition on the
                                                          171: 179–186. doi: 10.1006/jcis.1995.1165.
       short-term and long-term dissolution rates of ten borosilicate glasses
                                                     [21]  Zhang  Hui,  Li  Chengtao,  Song  Lijun.  Effect  of  pH  on
       of  increasing  complexity  from  3  to  30  oxides[J].  Journal  of  Non-
                                                          electrochemical  properties  of  316L  stainless  steel[J].  Corrosion
       Crystalline Solids, 2012, 358: 2599–2570.
                                                          Protection, 2013, 34(7): 593–596 (in Chinese) [张晖, 李成涛, 宋利
   [  8  ]  Aréna H, Godon N, Rébiscoul D, et al. Impact of Zn Mg Ni and Co
                                                          君. pH对316L不锈钢电化学性能的影响[J]. 腐蚀与防护, 2013,
       elements on glass alteration: Additive effects[J]. Journal of Nuclear
                                                          34(7): 593–596].
       Materials, 2016, 470: 55–67. doi: 10.1016/j.jnucmat.2015.11.050.
                                                     [22]  Laskowski J, Kitchener J A. Hydrophilic-hydrophobic transition on
   [  9  ]  Qiao Qian, He Hongtu, Yu Jiaxin. Effect of water on friction and
                                                          silica[J]. Journal of Colloid Interface Science, 1969, 29: 670–679.
       wear  behaviors  of  nuclear  waste  borosilicate  glass[J].  Tribology,
                                                          doi: 10.1016/0021-9797(69)90219-7.
       2020, 40(1): 40–48 (in Chinese) [乔乾, 何洪途, 余家欣. 水分对核
                                                     [23]  Horn J M, Onoda G Y. Surface charge of vitreous silica and silicate
       废料硅酸盐玻璃摩擦磨损性能的影响[J]. 摩擦学学报, 2020,
                                                          glasses in aqueous electrolyte solutions[J]. Journal of the American
       40(1): 40–48]. doi: 10.16078/j.tribology.2019096.
                                                          Ceramic  Society,  1978,  61:  523 –527.  doi:  10.1111/j.1151-
   [10]  Kalin M, Novak S, Vižintin J. Wear and friction behavior of alumina
                                                          2916.1978.tb16132.x.
       ceramics in aqueous solutions with different pH[J]. Wear, 2003, 254:
                                                     [24]  Parks G A, Bruyn P D. Zero point of charge of oxides[J]. Journal of
       1141–1146. doi: 10.1016/S0043-1648(03)00326-0.
                                                          Physical Chemistry, 1962, 66: 967–973. doi: 10.1021/j100812a002.
   [11]  Li  J  J,  Zhang  C  H,  Ma  L  R,  et  al.  Superlubricity  achieved  with
                                                     [25]  Dekeizer A, Fokkink L G J, Lyklema J. Thermodynamics of proton
       mixtures of acids and glycerol[J]. Langmuir, 2013, 29(1): 271–275.
                                                          charge  formation  on  oxides-microcalorimetry[J].  Colloids  Surface,
       doi: 10.1021/la3046115.
   [12]  Li J J, Zhang C H, Luo J B. Superlubricity behavior with phosphoric  1990, 49: 149–163. doi: 10.1016/0166-6622(90)80099-P.
                                                     [26]  Jia  Junhong,  Zhou  Huidi,  Gao  Shengqiang,  et  al.  The  tribological
       acid-water network induced by rubbing[J]. Langmuir, 2011, 27(15):
                                                          behavior  of  cabon  fiber  reinforced  polyimide  composites  under
       9413–9417. doi: 10.1021/la201535x.
   [13]  Ma  Z  Z,  Zhang  C  H,  Luo  J  B,  et  al.  Superlubricity  of  a  mixed  water lubrication[J]. Tribology, 2002, 22(4): 273–276 (in Chinese)
       Aqueous solution[J]. Chinese Physical Letter, 2011, 28(5): 056201.  [贾均红, 周惠娣, 高生强, 等. 聚酰亚胺复合材料的摩擦性能及其
       doi: 10.1088/0256-307X/28/5/056201.                机理研究[J]. 摩擦学学报, 2002, 22(4): 273–276]. doi: 10.3321/j.issn:
   [14]  Li  J,  Zhang  C,  Sun  L,  et  al.  Tribochemistry  and  superlubricity  1004-0595.2002.04.008.
       induced  by  hydrogen  ions[J].  Langmuir,  2012,  28(45):  [27]  He H, Xiao T, Qiao Q, et al. Contrasting roles of speed on wear of
       15816–15823. doi: 10.1021/la303897x.               soda  lime  silica  glass  in  dry  and  humid  air[J].  Journal  of  Non-
   [15]  Yan S, Wang A, Fei J, et al. Hydrogen ion induced ultralow wear of  Crystalline Solids, 2018, 502: 236–243. doi: 10.1016/j.jnoncrysol.2018.09.
       PEEK under extreme load[J]. Applied Physics Letter, 2018, 112(10):  014.
   58   59   60   61   62   63   64   65   66   67   68