Page 71 - 《高原气象》2023年第1期
P. 71
1 期 朱羿洁等:夏季南亚高压位置与青藏高原降水年际变化的关系研究 67
董一平, 陈权亮, 2010. 热带对流活动对川渝地区夏季降水的影响 钱永甫, 张琼, 张学洪, 2002. 南亚高压与我国盛夏气候异常[J].
[J]. 安 徽 农 业 科 学 , 38(12): 6329-6332. DOI: 10. 3969/j. 南京大学学报(自然科学版), 38(3): 295-307. DOI: 10. 3321/
issn. 0517-6611. 2010. 12. 091. j. issn: 0469-5097. 2002. 03. 004.
高文良, 郁淑华, 2018. 高原涡诱发西南涡伴行个例的环境场与成 孙亦, 巩远发, 2019. 印度夏季风影响下的青藏高原降水及环流异
因分析[J]. 高原气象, 37(1): 54-67. DOI: 10. 7522/j. issn. 常变化特征[J]. 成都信息工程大学学报, 34(4): 411-419.
1000-0534. 2017. 00020. DOI: 10. 16836/j. cnki. jcuit. 2019. 04. 014.
黄荣辉, 1985. 夏季青藏高原上空热源异常对北半球大气换就异常 陶诗言, 朱福康, 1964. 夏季亚洲南部 100 毫巴流型的变化及其与
的 作 用[J]. 气 象 学 报 , 43(2): 208-220. DOI: 10. 11676/ 西太平洋副热带高压进退的关系[J]. 气象学报, 34(4): 385-
qxxb1985. 026. 396. DOI: 10. 11676/qxxb1964. 039.
黄嘉佑, 1990. 气象统计分析与预报方法[M]. 北京: 气象出版社, 汤秋鸿, 刘宇博, 张弛, 等, 2020. 青藏高原及其周边地区降水的水
179-197. 汽来源变化研究进展[J]. 大气科学学报, 43(6): 1002-1009.
黄凌昕, 张帅, 陈婕, 等, 2021. 中全新世青藏高原西南部异常高降 DOI: 10. 13878/j. cnki. dqkxxb. 20201003001.
水机制探讨[J]. 高原气象, 40(6): 1407-1418. DOI: 10. 7522/ 吴国雄, 毛江玉, 段安民, 等, 2004. 青藏高原影响亚洲夏季气候研
j. issn. 1000-0534. 2021. zk022. 究 的 最 新 进 展[J]. 气 象 学 报 , 62(5): 528-540. DOI: 10.
李生辰, 徐亮, 郭英香, 等, 2007. 近 34a 青藏高原年降水变化及其 11676/qxxb2004. 054.
分区[J]. 中国沙漠, 27(2): 307-314. DOI: 10. 3321/j. issn: 许建伟, 高艳红, 彭保发, 等, 2020. 1979-2016 年青藏高原降水的
1000-694X. 2007. 02. 024. 变化特征及成因分析[J]. 高原气象, 39(2): 234-244. DOI:
林振耀, 赵昕奕, 1996. 青藏高原气温降水变化的空间特征[J]. 中 10. 7522/j. issn. 1000-0534. 2019. 00029.
国科学(地球科学), 26(4): 354-358. DOI: 10. 1360/zd1996- 叶笃正, 高由禧, 1979. 青藏高原气象学[M]. 北京: 科学出版社,
26-4-354. 49-59.
Relation between Inter-annual Variation of the South Asian High Location
and Precipitation over the Qinghai-Xizang Plateau in Summer
ZHU Yijie , ZHANG Feimin , YANG Yaoxian , WANG Chenghai 1
1
2, 3
1
(1. Key Laboratory of Climate Resources Development and Disaster Prevention of Gansu Province, Research Center for Earth System
Model Development, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, Gansu, China;
2. Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Northwest Institute of Eco-Environment
and Resources, Lanzhou 730000, Gansu, China;
3. Nagqu Station of Plateau Climate and Environment, Northwest Institute of Eco-Environment and Resources,
Chinese Academy of Sciences, Nagqu 852000, Xizang, China)
Abstract: Using synthetic analysis, dynamic diagnosis and numerical simulation, the relation between South
Asian High (SAH) Location and Precipitation over the Qinghai-Xizang Plateau (QXP) in summer at inter-annu‐
al scale is analyzed, characteristics and effects of water vapor transport and diabatic heating over QXP are diag‐
nosed. Results show that, when SAH shifts to southeast (northwest), water vapor convergence (divergence)
and water vapor transport over the eastern QXP are significant, while water vapor divergence (convergence)
over the southwestern QXP is significant, which are the key factors that result in significant more (less) precipi‐
tation on eastern QXP and significant less (more) precipitation on southwestern QXP. The anomalous atmospher‐
ic condensational latent heating on eastern QXP contributes to the maintenance of the relation between the loca‐
tion of SAH and precipitation over QXP. When SAH shifts to southeast (northwest), precipitation over north‐
western QXP is significantly increased (decreased), which is related to the stronger (weaker) surface latent heat‐
ing and the lower (higher) geopotential height at lower atmosphere in this region, however, this relation is not
significant.
Key words: Qinghai-Xizang Plateau (QXP); summer precipitation; South Asian High; inter-annual variation