Page 70 - 《高原气象》2023年第1期
P. 70

高     原      气     象                                 42 卷
              66
                                                                Guo Y P, Wang C H, 2014. Trends in precipitation recycling over the
                                                                   Qinghai-Xizang  Plateau  in  last  decades[J]. Journal  of  Hydrolo‐
                                                                   gy, 517: 826-835. DOI: 10. 1016/j. jhydrol. 2014. 06. 006.
                                                                Hu J, Duan A M, 2015. Relative contributions of the Tibetan Plateau
                                                                   thermal forcing and the Indian Ocean Sea surface temperature ba‐
                                                                   sin mode to the interannual variability of the East Asian summer
                                                                   monsoon [J]. Climate Dynamics, 45(9-10): 2697-2711. DOI:
                                                                   10. 1007/s00382-015-2503-7.
                                                                Luo Y  L,  Zhang  R  H,  Qian W  M,  et  al,  2011. Intercomparison  of
                                                                   deep convection over the Tibetan Plateau-Asian Monsoon Region
                                                                   and Subtropical North Amercia in boreal summer using CloudSat/
                                                                   CALIPSO  Data[J]. Journal  of  Climate,  24(8):  2164-2177.
                                                                   DOI: 10. 1175/2010JCLI4032. 1.
                                                                Schneider U, Becker A, Finger P, et al, 2014. GPCC's new land sur‐
                                                                   face precipitation climatology based on quality-controlled in situ
                                                                   data and its role in quantifying the global water cycle[J]. Theoret‐
                                                                   ical  and  Applied  Climatology,  115(S1/2) :  15-40. DOI:
                                                                   10. 1007/s00704-013-0860-x.
               图6 敏感性试验中高原东部大气加热廓线的垂直分布                         Watanabe M, Kimoto M, 2000. Atmosphere-ocean thermal coupling
               (a), 200 hPa位势高度异常(等值线, 间隔分别为-1. 0、                 in the North Atlantic: A positive feedback[J]. Quarterly Journal
               0. 0、 1. 0、 2. 0、 4. 0、 6. 0, 单位: m)及σ = 0.5层的大气    of Royal Meteorological Society, 126(570): 3343-3369. DOI:
                   异常加热(阴影, 单位: K·d )的水平分布(b)                      10. 1256/smsqj. 57016.
                                        -1
             Fig. 6 The vertical distribution of atmospheric heating profiles   Wei W, Zhang R H, Wen M, et al, 2015. Interannual variation of the
                                                                   South Asian High and its relation with Indian and East Asian sum‐
             on the eastern Qinghai-Xizang Plateau (a), the spatial distribu‐
                                                                   mer  monsoon  rainfall[J]. Journal  of  Climate,  28(7):  2623-
              tion of geopotential height anomaly at 200 hPa (contours with
                                                                   2634. DOI: 10. 1175/JCLI-D-14-00454. 1.
              intervals of -1. 0, 0. 0, 1. 0, 2. 0, 4. 0, and 6. 0, respectively.
                                                                Yanai M, Esbensen S, Chu J H, 1973. Determination of bulk proper‐
               Unit: m) and horizontal atmospheric heating (the shaded,
                                                                   ties of tropical cloud clusters from large-scale heat and moisture
                       -1
                unit: K·d ) at σ = 0.5 in the sensitivity experiment (b)  budgets[J]. Journal of the Atmospheric Sciences, 30(4): 611-
             正反馈关系, 大气凝结潜热加热起着维持作用。                                627. DOI:  10. 1175/1520-0469(1973)030<0611:  DOBPOT>
                                                                   2. 0. CO; 2.
                 (3)  南亚高压位置偏东南(西北)时, 高原西北
                                                                Yanai M, Tomita T, 1998. Seasonal and interannual variability of atmo‐
             部降水显著偏多(少), 这与高原西北部地表潜热偏
                                                                   spheric heat sources and moisture sinks as determined from NCEP-
             强(弱), 500 hPa 位势高度偏低(高)存在一定的关                         NCAR reanalysis[J]. Journal of Climate, 11(3): 463-482. DOI:
             系。但是, 地表潜热、 500 hPa位势高度的变化并不                          10. 1175/1520-0442(1998)011<0463: SAIVOA>2. 0. CO; 2.
             显著, 意味着高原西北部降水的显著变化可能是多                            Zhang C, Tang Q H, Chen D L, 2017. Recent changes in the moisture
             因素综合影响的结果, 需要在未来的工作中进一步                               source of precipitation over the Tibetan Plateau[J]. Journal of Cli‐
                                                                   mate, 30(5): 1807-1819. DOI: 10. 1175/jcli-d-15-0842. 1.
             深入研究。
                                                                Zhang F M, Wang C H, Pu Z X, 2019. Genesis of Tibetan Plateau
             参考文献:                                                 vortex: Roles of surface diabatic and atmospheric condensational
                                                                   latent heating[J]. Journal of Applied Meteorology and Climatolo‐
             Cui Y, Wang C H, 2009. Comparison of sensible and latent heat flux‐  gy, 58(12): 2633-2651. DOI: 10. 1175/JAMC-D-19-0103. 1.
                 es  during  the  transition  season  over  the  western Tibetan  Plateau   Zhang Q, Wu G X, Qian Y F, 2002. The bimodality of the 100 hPa
                 from reanalysis datasets[J]. Progress in Natural Science, 19(6):   South Asia High and its relationship to the climate anomaly over
                 719-726. DOI: 10. 1016/j. pnsc. 2008. 11. 001.    East Asia in summer[J]. Journal of the Meteorological Society of
             Dong W H, Lin Y L, Wright J S, et al, 2016. Summer rainfall over   Japan, 80(4): 733-744. DOI: 10. 2151/jmsj. 80. 733.
                 the  southwestern  Tibetan  Plateau  controlled  by  deep  convection   Zhang W X, Zhou T J, Zhang L X, 2017. Wetting and greening Tibet‐
                 over the Indian subcontinent[J]. Nature Communications, 7: 19.  an Plateau in early summer in recent decades[J]. Journal of Geo‐
                 DOI: 10. 1038/ncomms10925.                        physical  Research,  122(11):  5808-5822. DOI:  10. 1002/
             Gao Y H, Guo L, Zhang Y X, 2014. Changes in moisture flux over   2017JD026468.
                 the Tibetan  Plateau  during  1979-2011  and  possible  mechanisms  岑思弦, 陈文, 胡鹏, 等, 2021. 南亚高压演变过程及其变异机制研
                [J]. Journal  of  Climate,  27(5):  1876-1893. DOI:  10. 1175/  究进展[J]. 高原气象, 40(6): 1304-1317. DOI: 10. 7522/j.
                 JCLI-D-13-00321. 1.                               issn. 1000-0534. 2021. zk014.
   65   66   67   68   69   70   71   72   73   74   75