Page 14 - 《高原气象》2023年第1期
P. 14
高 原 气 象 42 卷
10
tion[J]. Tellus A: Dynamic Meteorology and Oceanography, 64 Rigor I G, Wallace M, Colony R, 2002. Response of sea ice to the
(1): 11595. DOI: 10. 3402/tellusav64i0. 11595. Arctic Oscillation[J]. Journal of Climate, 15(18): 2648-2663,
Kim B M, Son S K, Min S K, et al, 2014. Weakening of the strato‐ DOI: 10. 1175/1520-0442 (2002) 015<2648: ROSITT>2. 0.
spheric polar vortex by Arctic sea-ice loss[J]. Nature Communi‐ CO; 2.
cations, 5(1): 4646. DOI: 10. 1038/ncomms5646. Peings Y, Magnusdottir G, 2014. Response of the wintertime northern
Kosaka Y, Xie S P, 2013. Recent global-warming hiatus tied to equa‐ hemisphere atmospheric circulation to current and projected Arc‐
torial Pacific surface cooling[J]. Nature: International Weekly tic Sea ice decline: a numerical study with CAM5[J]. Journal of
Journal of Science, 501(7467): 403-407. DOI: 10. 1038/na‐ Climate, 27(1): 244-264. DOI: 10. 1175/jcli-d-13-00272. 1.
ture12534. Pithan F, Mauritsen T, 2014. Arctic amplification dominated by tem‐
Kug J S, Jeong J H, Jang Y S, et al, 2015. Two distinct influences perature feedbacks in contemporary climate models[J]. Nature
of Arctic warming on cold winters over North America and East Geoscience, 7(3): 181-184. DOI: 10. 1038/NGEO2071.
Asia[J]. Nature Geoscience, 8(10): 759-762. DOI: 10. 1038/ Polyakov I V, Pnyushkov A V, Alkire M B, et al, 2017. Greater role
ngeo2517. for Atlantic inflows on sea-ice loss in the Eurasian Basin of the
Liu J P, Curry J A, Wang H J, et al, 2012. Impact of declining Arctic Arctic Ocean[J]. Science, 356(6335): 285-291. DOI: 10. 1126/
sea ice on winter snowfall[J]. Proceedings of the National Acade‐ science. aai8204.
my of Sciences of the United States of America, 109(11): 4074- Sato K, Inoue J, Watanabe M, et al, 2014. Influence of the Gulf
4079. DOI: 10. 1073/pnas. 1114910109. Stream on the Barents Sea ice retreat and Eurasian coldness dur‐
Luo D, Xiao Y, Yao Y, et al, 2016. Impact of Ural blocking on win‐ ing early winter[J]. Environmental Research Letters, 9(8):
ter warm arctic-cold Eurasian anomalies, Part I: blocking-in‐ 101003. DOI: 10. 1088/1748-9326/9/8/084009.
duced amplification[J]. Journal of Climate, 29(11): 3925- Screen J A, Simmonds I, 2010. The central role of diminishing sea ice
3947. DOI: 10. 1175/JCLI-D-15-0611. 1. in recent Arctic temperature amplification[J]. Nature: Interna‐
Manabe S, Stouffer R J, 1980. Sensitivity of a global climate model tional Weekly Journal of Science, 464(7293): 1334-1337. DOI:
to an increase of CO concentration in the atmosphere[J]. Journal 10. 1038/nature09051.
2
of Geophysical Research: Oceans, 85(C10): 5529-5554. DOI: Screen J A, Simmonds I, 2013. Exploring links between Arctic ampli‐
10. 1029/JC085iC10p05529. fication and mid-latitude weather[J]. Geophysical Research Let‐
Matsumura S, Kosaka Y, 2019. Arctic-Eurasian climate linkage in‐ ters, 40(5): 959-964. DOI: 10. 1002/grl. 50174.
duced by tropical ocean variability[J]. Nature Communications, Screen J A, 2017. Far-flung effects of Arctic warming[J]. Nature Geo‐
10(1): 3441. DOI: 10. 1038/s41467-019-11359-7. science, 10(4): 253-254. DOI: 10. 1038/ngeo2924.
Messori G, Woods C, Caballero R, 2018. On the drivers of winter‐ Serreze M C, Barrett A P, Stroeve J, 2012. Recent changes in tropo‐
time temperature extremes in the high Arctic[J]. Journal of Cli‐ spheric water vapor over the Arctic as assessed from radiosondes
mate, 31(4): 1597-1618. DOI: 10. 1175/JCLI-D-17-0386. 1. and atmospheric reanalyses[J]. Journal of Geophysical Research:
Mills C M, Cassano J J, Cassano E N, 2016. Midlatitude atmospheric Atmospheres, 117(D10): D10104. DOI: 10. 1029/2011JD01
responses to Arctic sensible heat flux anomalies in Community 7421.
Climate Model, Version4[J]. Geophysical Research Letters, 43 Semmler T, Lukrecia S, Thomas J, et al, 2016. Seasonal atmospheric
(23): 12270-12277. DOI: 10. 1002/2016GL071356. responses to reduced Arctic sea ice in an ensemble of coupled
Mori M, Watanabe M, Shiogama H, et al, 2014. Robust Arctic sea- model simulations[J]. Journal of Climate, 29(16): 5893-5913.
ice influence on the frequent Eurasian cold winters in past de‐ DOI: 10. 1175/JCLI-D-15-0586. 1.
cades[J]. Nature Geoscience, 7(12): 869-873. DOI: 10. 1038/ Singh D, Flanner M G, Perket J, 2015. The global land shortwave
ngeo2277. cryosphere radiative effect during the MODIS era[J]. The Cryo‐
Mudryk L R, Kushner P J, Derksen K, 2013. Interpreting observed sphere, 9(6): 2057-2070. DOI: 10. 5194/tc-9-2057-2015.
Northern Hemisphere snow trends with large ensembles of cli‐ Smeed D A, McCarthy G D, Cunningham S A, et al, 2014. Observed
mate simulations[J]. Climate Dynamics, 43(1/2): 345-359. decline of the Atlantic meridional overturning circulation 2004–
DOI: 10. 1007/s00382-013-1954-y. 2012[J]. Ocean Science (OS), 10(1): 29-38. DOI: 10. 5194/
Moon T A, Druckenmiller M L, Thoman R L, et al, 2021. Arctic Re‐ os-10-29-2014.
port Card 2021[R]. NOAA. DOI: 10. 25923/5s0f-5163. Vavrus S J, Holland M M, Jahn A, et al, 2012. Twenty-First-Century
Nakamura T, Yamazaki K, Sato T, et al, 2019. Memory effects of Arctic Climate Change in CCSM4[J]. Journal of Climate, 25
Eurasian land processes cause enhanced cooling in response to (8): 2696-2710. DOI: 10. 1175/JCLI-D-11-00220. 1.
sea ice loss[J]. Nature Communications, 10(1): 5111. DOI: Soden B J, Held I M, Colman R, et al, 2008. Quantifying climate
10. 1038/s41467-019-13124-2. feedbacks using radiative kernels[J]. Journal of Climate, 21
Overland J E, Wood K R, Wang M Y, 2011. Warm Arctic-cold conti‐ (14): 3504–3520. DOI: 10. 1175/2007JCLI2110. 1.
nents: climate impacts of the newly open Arctic Sea[J]. Polar Re‐ Spielhagen R F, Werner K, Sørensen S A, et al, 2011. Enhanced
search, 30(1): 15787. DOI: 10. 3402/polar. v30i0. 15787. modern heat transfer to the Arctic by warm Atlantic water[J]. Sci‐