Page 14 - 《高原气象》2023年第1期
P. 14

高     原      气     象                                 42 卷
              10
                 tion[J]. Tellus A: Dynamic Meteorology and Oceanography, 64  Rigor I G, Wallace M, Colony R, 2002. Response of sea ice to the
                (1): 11595. DOI: 10. 3402/tellusav64i0. 11595.     Arctic Oscillation[J]. Journal of Climate, 15(18): 2648-2663,
             Kim B M, Son S K, Min S K, et al, 2014. Weakening of the strato‐  DOI:  10. 1175/1520-0442 (2002) 015<2648:  ROSITT>2. 0.
                 spheric polar vortex by Arctic sea-ice loss[J]. Nature Communi‐  CO; 2.
                 cations, 5(1): 4646. DOI: 10. 1038/ncomms5646.  Peings Y, Magnusdottir G, 2014. Response of the wintertime northern
             Kosaka Y, Xie S P, 2013. Recent global-warming hiatus tied to equa‐  hemisphere atmospheric circulation to current and projected Arc‐
                 torial  Pacific  surface  cooling[J]. Nature:  International  Weekly   tic Sea ice decline: a numerical study with CAM5[J]. Journal of
                 Journal  of  Science,  501(7467):  403-407. DOI:  10. 1038/na‐  Climate, 27(1): 244-264. DOI: 10. 1175/jcli-d-13-00272. 1.
                 ture12534.                                     Pithan F, Mauritsen T, 2014. Arctic amplification dominated by tem‐
             Kug J S, Jeong J H, Jang Y S, et al, 2015. Two distinct influences   perature  feedbacks  in  contemporary  climate  models[J]. Nature
                 of Arctic warming on cold winters over North America and East   Geoscience, 7(3): 181-184. DOI: 10. 1038/NGEO2071.
                 Asia[J]. Nature Geoscience, 8(10): 759-762. DOI: 10. 1038/  Polyakov I V, Pnyushkov A V, Alkire M B, et al, 2017. Greater role
                 ngeo2517.                                         for Atlantic inflows on sea-ice loss in the Eurasian Basin of the
             Liu J P, Curry J A, Wang H J, et al, 2012. Impact of declining Arctic   Arctic Ocean[J]. Science, 356(6335): 285-291. DOI: 10. 1126/
                 sea ice on winter snowfall[J]. Proceedings of the National Acade‐  science. aai8204.
                 my of Sciences of the United States of America, 109(11): 4074-  Sato  K,  Inoue  J,  Watanabe  M,  et  al,  2014. Influence  of  the  Gulf
                 4079. DOI: 10. 1073/pnas. 1114910109.             Stream on the Barents Sea ice retreat and Eurasian coldness dur‐
             Luo D, Xiao Y, Yao Y, et al, 2016. Impact of Ural blocking on win‐  ing  early  winter[J]. Environmental  Research  Letters,  9(8):
                 ter  warm  arctic-cold  Eurasian  anomalies,  Part  I:  blocking-in‐  101003. DOI: 10. 1088/1748-9326/9/8/084009.
                 duced  amplification[J]. Journal  of  Climate,  29(11):  3925-  Screen J A, Simmonds I, 2010. The central role of diminishing sea ice
                 3947. DOI: 10. 1175/JCLI-D-15-0611. 1.            in  recent  Arctic  temperature  amplification[J]. Nature:  Interna‐
             Manabe S, Stouffer R J, 1980. Sensitivity of a global climate model   tional Weekly Journal of Science, 464(7293): 1334-1337. DOI:
                 to an increase of CO  concentration in the atmosphere[J]. Journal   10. 1038/nature09051.
                              2
                 of Geophysical Research: Oceans, 85(C10): 5529-5554. DOI:   Screen J A, Simmonds I, 2013. Exploring links between Arctic ampli‐
                 10. 1029/JC085iC10p05529.                         fication and mid-latitude weather[J]. Geophysical Research Let‐
             Matsumura  S,  Kosaka  Y,  2019. Arctic-Eurasian  climate  linkage  in‐  ters, 40(5): 959-964. DOI: 10. 1002/grl. 50174.
                 duced by tropical ocean variability[J]. Nature Communications,   Screen J A, 2017. Far-flung effects of Arctic warming[J]. Nature Geo‐
                 10(1): 3441. DOI: 10. 1038/s41467-019-11359-7.    science, 10(4): 253-254. DOI: 10. 1038/ngeo2924.
             Messori G, Woods C, Caballero R, 2018. On the drivers of winter‐  Serreze M C, Barrett A P, Stroeve J, 2012. Recent changes in tropo‐
                 time temperature extremes in the high Arctic[J]. Journal of Cli‐  spheric water vapor over the Arctic as assessed from radiosondes
                 mate, 31(4): 1597-1618. DOI: 10. 1175/JCLI-D-17-0386. 1.  and atmospheric reanalyses[J]. Journal of Geophysical Research:
             Mills C M, Cassano J J, Cassano E N, 2016. Midlatitude atmospheric   Atmospheres,  117(D10):  D10104. DOI:  10. 1029/2011JD01
                 responses  to  Arctic  sensible  heat  flux  anomalies  in  Community   7421.
                 Climate Model, Version4[J]. Geophysical Research Letters, 43  Semmler T, Lukrecia S, Thomas J, et al, 2016. Seasonal atmospheric
                (23): 12270-12277. DOI: 10. 1002/2016GL071356.     responses  to  reduced  Arctic  sea  ice  in  an  ensemble  of  coupled
             Mori M, Watanabe M, Shiogama H, et al, 2014. Robust Arctic sea-  model simulations[J]. Journal of Climate, 29(16): 5893-5913.
                 ice  influence  on  the  frequent  Eurasian  cold  winters  in  past  de‐  DOI: 10. 1175/JCLI-D-15-0586. 1.
                 cades[J]. Nature Geoscience, 7(12): 869-873. DOI: 10. 1038/  Singh  D,  Flanner  M  G,  Perket  J,  2015. The  global  land  shortwave
                 ngeo2277.                                         cryosphere radiative effect during the MODIS era[J]. The Cryo‐
             Mudryk L R, Kushner P J, Derksen K, 2013. Interpreting observed   sphere, 9(6): 2057-2070. DOI: 10. 5194/tc-9-2057-2015.
                 Northern  Hemisphere  snow  trends  with  large  ensembles  of  cli‐  Smeed D A, McCarthy G D, Cunningham S A, et al, 2014. Observed
                 mate  simulations[J]. Climate  Dynamics,  43(1/2):  345-359.  decline of the Atlantic meridional overturning circulation 2004–
                 DOI: 10. 1007/s00382-013-1954-y.                  2012[J]. Ocean Science (OS), 10(1): 29-38. DOI: 10. 5194/
             Moon T A, Druckenmiller M L, Thoman R L, et al, 2021. Arctic Re‐  os-10-29-2014.
                 port Card 2021[R]. NOAA. DOI: 10. 25923/5s0f-5163.  Vavrus S J, Holland M M, Jahn A, et al, 2012. Twenty-First-Century
             Nakamura T, Yamazaki  K,  Sato T,  et  al,  2019. Memory  effects  of   Arctic  Climate  Change  in  CCSM4[J]. Journal  of  Climate,  25
                 Eurasian  land  processes  cause  enhanced  cooling  in  response  to   (8): 2696-2710. DOI: 10. 1175/JCLI-D-11-00220. 1.
                 sea  ice  loss[J]. Nature  Communications,  10(1):  5111. DOI:   Soden  B  J,  Held  I  M,  Colman  R,  et  al,  2008. Quantifying  climate
                 10. 1038/s41467-019-13124-2.                      feedbacks  using  radiative  kernels[J]. Journal  of  Climate,  21
             Overland J E, Wood K R, Wang M Y, 2011. Warm Arctic-cold conti‐  (14): 3504–3520. DOI: 10. 1175/2007JCLI2110. 1.
                 nents: climate impacts of the newly open Arctic Sea[J]. Polar Re‐  Spielhagen  R  F,  Werner  K,  Sørensen  S  A,  et  al,  2011. Enhanced
                 search, 30(1): 15787. DOI: 10. 3402/polar. v30i0. 15787.  modern heat transfer to the Arctic by warm Atlantic water[J]. Sci‐
   9   10   11   12   13   14   15   16   17   18   19