Page 13 - 《高原气象》2023年第1期
P. 13
1 期 韩笑笑等:“北极放大”现象驱动因素及其影响的研究进展综述 9
srep01556. sea-ice loss under increasing CO [J]. Nature Communications,
2
Boeke R C, Taylor P C, 2018. Seasonal energy exchange in sea ice re‐ 10(1): 121. DOI: 10. 1038/s41467-018-07954-9.
treat regions contributes to differences in projected Arctic warm‐ Eastman R, Warren S G, 2010. Interannual variations of Arctic cloud
ing[J]. Nature Communications, 9(1): 5017. DOI: 10. 1038/ types in relation to sea ice[J]. Journal of Climate, 23(15):
s41467-018-07061-9. 4216-4232. DOI: 10. 1175/2010JCLI3492. 1.
Bueh C, 2011. Large-scale circulation features typical of wintertime Francis J A, Hunter E, 2006. New insight into the disappearing Arctic
extensive and persistent low temperature events in China[J]. At‐ sea ice[J]. Geophysical Research Letters, 87(46): 509-524.
mospheric and Oceanic Science Letters, 4(4): 235-241. DOI: DOI: 10. 1029/2006EO460001.
10. 1007/s00382-012-1587-6. Francis J A, Vavrus S J, 2012. Evidence linking Arctic amplification
Cai M, 2005. Dynamical amplification of polar warming[J]. Geo‐ to extreme weather in mid-latitudes[J]. Geophysical Research
physical Research Letters, 32(22): L22710. DOI: 10. 1029/ Letters, 39(6): L6801. DOI: 10. 1029/2012gl051000.
2005GL024481. Graversen R G, Langen P L, Mauritsen T, 2014. Polar amplification
Cavalieri D J, Parkinson C L, Vinnikov K Y, 2003. 30-Year satellite in CCSM4: Contributions from the lapse rate and surface albedo
record reveals contrasting Arctic and Antarctic decadal sea ice feedbacks[J]. Journal of Climate, 27(12): 4433-4450. DOI:
variability[J]. Geophysical Research Letters, 30(18): 1970. 10. 1175/JCLI-D-13-00551. 1.
DOI: 10. 1029/2003GL018031. Ghatak D, Miller J, 2013. Implications for Arctic amplification of
Cheung H N, Zhou W, Shao Y P, et al, 2013. Observational climatol‐ changes in the strength of the water vapor feedback[J]. Journal of
ogy and characteristics of wintertime atmospheric blocking over Geophysical Research: Atmospheres, 118(14): 7569-7578.
Ural-Siberia[J]. Climate Dynamics, 41(1): 63-79. DOI: 10. DOI: 10. 1002/jgrd. 50578.
1007/s00382-012-1587-6. Hahn D G, Shukla J, 1976. An apparent relationship between Eur‐
Chen X D, Luo D H, 2017. Arctic sea ice decline and continental cold asian snow cover and Indian monsoon rainfall[J]. Journal of the
anomalies: Upstream and downstream effects of Greenland block‐ Atmospheric Sciences, 33(12): 2461-2462. DOI: 10. 1175/
ing[J]. Geophysical Research Letters, 44(7): 3411-3419. DOI: 1520-0469(1976)033<2461: AARBES>2. 0. CO; 2.
10. 1002/2016GL072387. Hall A, 2004. The Role of Surface Albedo Feedback in Climate[J].
Chung C E, Räisänen P, 2011. Origin of the Arctic warming in cli‐ Journal of Climate, 17(7): 1550-1568. DOI: 10. 1175/1520-
mate models[J]. Geophysical Research Letters, 38(21): 0442(2004)017<1550: TROSAF>2. 0CO; 2.
L21704. DOI: 10. 1029/2011GL049816. Hoerling M P, Hurrell J W, Xu T, 2011. Tropical origins for recent
Colman R A, 2013. Surface albedo feedbacks from climate variability North Atlantic climate change[J]. Science, 292(5514): 90-92.
and change[J]. Journal of Geophysical Research: Atmospheres, DOI: 10. 1126/science. 1058582.
118(7): 2827-2834. DOI: 10. 1002/jgrd. 50230. Holland M M, Bitz C M, 2003. Polar amplification of climate change
Cohen J, Barlow M, Kushner P J, et al, 2007. Stratosphere-tropo‐ in coupled models[J]. Climate Dynamics, 21(3/4): 221-232.
sphere coupling and links with Eurasian land surface variability DOI: 10. 1007/s00382-003-0332-6.
[J]. Journal of Climate, 20(21): 5335-5343. DOI: 10. 1175/ Honda M J, Jun I, Shozo Y, 2009. Influence of low Arctic sea-ice
2007JCLI1725. 1. minima on anomalously cold Eurasian winters[J]. Geophysical
Cohen J L, Furtado J C, Barlow M A, et al, 2012. Arctic warming, Research Letters, 36(8): L08707. DOI: 10. 1029/2008GL03
increasing snow cover and widespread boreal winter cooling[J]. 7079.
Environmental Research Letters, 7(1): 014007. DOI: 10. 1088/ Hopsch S, Cohen J, Dethloff K, 2012. Analysis of a link between fall
1748-9326/7/1/014007. Arctic sea-ice concentration and atmospheric patterns in the fol‐
Cohen J, Furtado J C, Jones J, et al, 2014a. Linking Siberian snow lowing winter[J]. Tellus A: Dynamic Meteorology and Oceanog‐
cover to precursors of stratospheric variability[J]. Journal of Cli‐ raphy, 64(1): 18624. DOI: 10. 3402/tellusa. v64i0. 18624.
mate, 27(14): 5422-5432. DOI: 10. 1175/JCLI-D-13-00779. 1. Huang J B, Zhang X D, Zhang Q Y, et al, 2017. Recently amplified
Cohen J, Screen J A, Jason C, et al, 2014b. Recent Arctic amplifica‐ arctic warming has contributed to a continual global warming
tion and extreme mid-latitude weather[J]. Nature Geoscience, 7 trend[J]. Nature Climate Change, 7(12): 875-879. DOI: 10.
(9): 627–637. DOI: 10. 1038/ngeo2234. 1038/s41558-017-0009-5.
Comiso J C, Hall D K, 2014. Climate trends in the Arctic as observed Hwang Y T, Frierson D M W, Jennifer E K, 2011. Coupling between
from space [J]. Wiley Interdisciplinary Reviews: Climate Arctic feedbacks and changes in poleward energy transport[J].
Change, 5(3): 389-409. DOI: 10. 1002/wcc. 277. Geophysical Research Letters, 38(17): L17704. DOI: 101029/
Curry J A, Schramm J L, Ebert E E, 1993. Impact of clouds on the 2011GL048546.
surface radiation balance of the Arctic Ocean[J]. Meteorology IPCC, 2021. Climate Change 2021: The Physical Science Basis[R].
and Atmospheric Physics, 51(3/4): 197-217. DOI: 10. 1007/ Cambridge: Cambridge University Press.
bf01030494. Jaiser R, Dethloff D, Handorf D, et al, 2012. Impact of sea ice cover
Dai A, Luo D, Song M, et al, 2019. Arctic amplification caused by changes on the Northern Hemisphere atmospheric winter circula‐