Page 13 - 《高原气象》2023年第1期
P. 13

1 期                    韩笑笑等:“北极放大”现象驱动因素及其影响的研究进展综述                                          9
                  srep01556.                                        sea-ice  loss  under  increasing  CO [J]. Nature  Communications,
                                                                                          2
               Boeke R C, Taylor P C, 2018. Seasonal energy exchange in sea ice re‐  10(1): 121. DOI: 10. 1038/s41467-018-07954-9.
                  treat regions contributes to differences in projected Arctic warm‐  Eastman R, Warren S G, 2010. Interannual variations of Arctic cloud
                  ing[J]. Nature  Communications,  9(1):  5017. DOI:  10. 1038/  types  in  relation  to  sea  ice[J]. Journal  of  Climate,  23(15):
                  s41467-018-07061-9.                               4216-4232. DOI: 10. 1175/2010JCLI3492. 1.
               Bueh  C,  2011. Large-scale  circulation  features  typical  of  wintertime   Francis J A, Hunter E, 2006. New insight into the disappearing Arctic
                  extensive and persistent low temperature events in China[J]. At‐  sea  ice[J]. Geophysical  Research  Letters,  87(46):  509-524.
                  mospheric and Oceanic Science Letters, 4(4): 235-241. DOI:   DOI: 10. 1029/2006EO460001.
                  10. 1007/s00382-012-1587-6.                    Francis J A, Vavrus S J, 2012. Evidence linking Arctic amplification
               Cai  M,  2005. Dynamical  amplification  of  polar  warming[J]. Geo‐  to  extreme  weather  in  mid-latitudes[J]. Geophysical  Research
                  physical  Research  Letters,  32(22):  L22710. DOI:  10. 1029/  Letters, 39(6): L6801. DOI: 10. 1029/2012gl051000.
                  2005GL024481.                                  Graversen R G, Langen P L, Mauritsen T, 2014. Polar amplification
               Cavalieri D J, Parkinson C L, Vinnikov K Y, 2003. 30-Year satellite   in CCSM4: Contributions from the lapse rate and surface albedo
                  record  reveals  contrasting  Arctic  and  Antarctic  decadal  sea  ice   feedbacks[J]. Journal  of  Climate,  27(12):  4433-4450. DOI:
                  variability[J]. Geophysical  Research  Letters,  30(18):  1970.  10. 1175/JCLI-D-13-00551. 1.
                  DOI: 10. 1029/2003GL018031.                    Ghatak  D,  Miller  J,  2013. Implications  for  Arctic  amplification  of
               Cheung H N, Zhou W, Shao Y P, et al, 2013. Observational climatol‐  changes in the strength of the water vapor feedback[J]. Journal of
                  ogy  and  characteristics  of  wintertime  atmospheric  blocking  over   Geophysical  Research:  Atmospheres,  118(14):  7569-7578.
                  Ural-Siberia[J]. Climate  Dynamics,  41(1):  63-79. DOI:  10.    DOI: 10. 1002/jgrd. 50578.
                  1007/s00382-012-1587-6.                        Hahn  D  G,  Shukla  J,  1976. An  apparent  relationship  between  Eur‐
               Chen X D, Luo D H, 2017. Arctic sea ice decline and continental cold   asian snow cover and Indian monsoon rainfall[J]. Journal of the
                  anomalies: Upstream and downstream effects of Greenland block‐  Atmospheric  Sciences,  33(12):  2461-2462. DOI:  10. 1175/
                  ing[J]. Geophysical Research Letters, 44(7): 3411-3419. DOI:   1520-0469(1976)033<2461: AARBES>2. 0. CO; 2.
                  10. 1002/2016GL072387.                         Hall A, 2004. The Role of Surface Albedo Feedback in Climate[J].
               Chung C E, Räisänen P, 2011. Origin of the Arctic warming in cli‐  Journal  of  Climate,  17(7):  1550-1568. DOI:  10. 1175/1520-
                  mate  models[J]. Geophysical  Research  Letters,  38(21):   0442(2004)017<1550: TROSAF>2. 0CO; 2.
                  L21704. DOI: 10. 1029/2011GL049816.            Hoerling M P, Hurrell J W, Xu T, 2011. Tropical origins for recent
               Colman R A, 2013. Surface albedo feedbacks from climate variability   North Atlantic climate change[J]. Science, 292(5514): 90-92.
                  and change[J]. Journal of Geophysical Research: Atmospheres,   DOI: 10. 1126/science. 1058582.
                  118(7): 2827-2834. DOI: 10. 1002/jgrd. 50230.  Holland M M, Bitz C M, 2003. Polar amplification of climate change
               Cohen  J,  Barlow  M,  Kushner  P  J,  et  al,  2007. Stratosphere-tropo‐  in coupled models[J]. Climate Dynamics, 21(3/4): 221-232.
                  sphere  coupling  and  links  with  Eurasian  land  surface  variability  DOI: 10. 1007/s00382-003-0332-6.
                 [J]. Journal  of  Climate,  20(21):  5335-5343. DOI:  10. 1175/  Honda  M  J,  Jun  I,  Shozo Y,  2009. Influence  of  low Arctic  sea-ice
                  2007JCLI1725. 1.                                  minima  on  anomalously  cold  Eurasian  winters[J]. Geophysical
               Cohen J L, Furtado J C, Barlow M A, et al, 2012. Arctic warming,   Research  Letters,  36(8):  L08707. DOI:  10. 1029/2008GL03
                  increasing snow cover and widespread boreal winter cooling[J].  7079.
                  Environmental Research Letters, 7(1): 014007. DOI: 10. 1088/  Hopsch S, Cohen J, Dethloff K, 2012. Analysis of a link between fall
                  1748-9326/7/1/014007.                             Arctic  sea-ice  concentration  and  atmospheric  patterns  in  the  fol‐
               Cohen J, Furtado J C, Jones J, et al, 2014a. Linking Siberian snow   lowing winter[J]. Tellus A: Dynamic Meteorology and Oceanog‐
                  cover to precursors of stratospheric variability[J]. Journal of Cli‐  raphy, 64(1): 18624. DOI: 10. 3402/tellusa. v64i0. 18624.
                  mate, 27(14): 5422-5432. DOI: 10. 1175/JCLI-D-13-00779. 1.  Huang J B, Zhang X D, Zhang Q Y, et al, 2017. Recently amplified
               Cohen J, Screen J A, Jason C, et al, 2014b. Recent Arctic amplifica‐  arctic  warming  has  contributed  to  a  continual  global  warming
                  tion and extreme mid-latitude weather[J]. Nature Geoscience, 7  trend[J]. Nature Climate Change, 7(12): 875-879. DOI: 10.
                 (9): 627–637. DOI: 10. 1038/ngeo2234.              1038/s41558-017-0009-5.
               Comiso J C, Hall D K, 2014. Climate trends in the Arctic as observed   Hwang Y T, Frierson D M W, Jennifer E K, 2011. Coupling between
                  from  space [J]. Wiley  Interdisciplinary  Reviews:  Climate   Arctic  feedbacks  and  changes  in  poleward  energy  transport[J].
                  Change, 5(3): 389-409. DOI: 10. 1002/wcc. 277.    Geophysical Research Letters, 38(17): L17704. DOI: 101029/
               Curry J A, Schramm J L, Ebert E E, 1993. Impact of clouds on the   2011GL048546.
                  surface  radiation  balance  of  the  Arctic  Ocean[J]. Meteorology   IPCC, 2021. Climate Change 2021: The Physical Science Basis[R].
                  and Atmospheric  Physics,  51(3/4):  197-217. DOI:  10. 1007/  Cambridge: Cambridge University Press.
                  bf01030494.                                    Jaiser R, Dethloff D, Handorf D, et al, 2012. Impact of sea ice cover
               Dai A, Luo D, Song M, et al, 2019. Arctic amplification caused by   changes on the Northern Hemisphere atmospheric winter circula‐
   8   9   10   11   12   13   14   15   16   17   18