Page 240 - 《高原气象》2021年第5期
P. 240
5 期 孟 恬等:GPS掩星观测误差和边界层高度的判别 1201
资料研究海洋边界层高度的特点[J]. 热带气象学报,31(1): (6):1195-1206. DOI:10. 7522/j. issn. 1000-0534. 2020. 00051.
43-50. DOI:10. 16032/j. issn. 1004-4965. 2015. 01. 005. 余小嘉,杨胜朋,蒋熹,2019. COSMIC 掩星资料在青藏高原地区
马元仓,李岩瑛,杨吉萍,等,2019. 青海中北部边界层高度与不同 的偏差特征[J]. 高原气象,38(2):288-298.DOI:10. 7522/
灾害天气的关系[J]. 高原气象,38(5):1048-1057. DOI:10. j. issn. 1000-0534. 2018. 00162.
7522/j. issn. 1000-0534. 2018. 00136. 赵采玲,李耀辉,柳媛普,等,2019. 中国西北地区大气边界层高度
徐晓华,刘树纶,罗佳,2018. 利用 COSMIC 掩星折射指数分析全 变化特征—基于探空资料与 ERA-Interim 再分析资料[J]. 高
球大气边界层顶结构变化[J]. 武汉大学学报·信息科学版,43 原气象,38(6):1181-1193. DOI:10. 7522/j. issn. 1000-0534.
(1):94-100. DOI:10. 13203/j. whugis20160183. 2018. 00152.
许鲁君,刘辉志,徐祥德,等,2018. WRF模式对青藏高原那曲地区 周文,杨胜朋,蒋熹,等,2018. 利用 COSMIC掩星资料研究青藏高
大气边界层模拟适用性研究[J]. 气象学报,76(6):955-967. 原地区大气边界层高度[J]. 气象学报,76(1):117-133. DOI:
DOI:10. 11676/qxxb2019. 059. 10. 11676/qxxb2017. 069.
杨显玉,吕雅琼,文军,等,2020. 不同参数化方案和再分析资料在 邹晓蕾,2012. GPS 无线电掩星资料特点[J]. 气象科技进展,(5):
典型高原湖泊地区的适用效果评估分析[J]. 高原气象,39 49-54. DOI:10. 3969/j. issn. 2095-1973. 2012. 05. 007.
Observation Error of GPS Radio Occultation and Discrimination of
Planetary Boundary Layer Height
1,2
1,2
MENG Tian ,YANG Shengpeng ,CHENG Hua 3
(1. Joint Center for Data Assimilation Research and Application,Nanjing University of Information Science and Technology,
Nanjing 210044,Jiangsu,China;
2. College of Atmospheric Science,Nanjing University of Information Science and Technology,Nanjing 210044,Jiangsu,China;
3. Anhui Meteorological Observatory,Hefei 230031,Anhui,China)
Abstract:COSMIC(Constellation Observing System for Meteorology,Ionosphere and Climate)global ocean
RO data from 2007 to 2014 were used,and the extreme values of bending angle and refractivity gradient were
used to determine the global marine PBL heights(respectively referred to as PBL BA and PBL ),and the relation‐
N
ship between the LSW at the PBL height,the vertical gradient of the refractivity,and the PBL difference be‐
N
diff
diff
BA
tween the bending angle and the refractivity(referred as PBL ,PBL =PBL -PBL )were discussed. The re‐
sults show that there is a clear linear relationship between the vertical gradient of refractivity and LSW. At the
first and second PBL height,the correlation coefficients can reach 0. 60 and 0. 68. The refractivity is mainly com‐
posed of dry and wet terms. In low latitudes,the wet term is the main contribution of the refractivity. The correla‐
tion coefficient between the vertical gradient of the wet term and the LSW in the first and second PBL height can
reach 0. 68 and 0. 69. The first boundary layer PBL diff increases with the vertical refractivity gradient. When the
diff
-1
absolute value of the refractivity gradient reaches 80 N-unit·km and 100 N-unit·km ,PBL can reach 100 me‐
-1
ters and 160 meters.
Key words:COSMIC RO;planetary boundary layer height;local Spectral Width