Page 239 - 《高原气象》2021年第5期
P. 239
高 原 气 象 40 卷
1200
Engeln A V,Teixeira J,2013. A planetary boundary layer height clima‐ ing height[J]. Atmospheric Environment,34(7):1001-1027.
tology derived from ECMWF reanalysis data[J]. Journal of Cli‐ DOI:10. 1016/S1352-2310(99)00349-0.
mate,26(17):6575-6590. DOI:10. 1175/JCLI-D-12-00385. 1. Seidel D J,Ao C O,Li K,2010. Estimating climatological planetary
Fjeldbo G,Kliore A J,Eshleman V R,1971. The neutral atmosphere of boundary layer heights from radiosonde observations:Compari‐
venus as studied with the mariner V radio occultation experiments son of methods and uncertainty analysis[J]. Journal of Geophysi‐
[J]. Atronomical Journal,76:123-140. DOI:10. 1086/111096. cal Research Atmospheres, 115 (D16113). DOI: 10. 1029/
Garratt J R,1993. Sensitivity of climate simulations to land-surface 2009JD013680.
and atmospheric boundary-layer treatments-A review[J]. Journal Smith E K,Weintraub S,1953. The constants in the equation for at‐
of Climate,6(3):419-448. DOI:10. 1175/1520-0442(1993) mospheric refractive index at radio frequencies[J]. Proceedings
0062. 0. CO;2. of the IRE,50(8):1035-1037. DOI:10. 1109/JRPRO C. 1953.
Gorbunov M E,Gurvich A S,1998. Microlab-1 experiment:Multipa‐ 274297.
th effects in the lower troposphere[J]. Journal of Geophysical Re‐ Sokolovskiy S,Kuo Y H,Rocken C,et al,2006. Monitoring the at‐
search:Atmospheres,103(D12):13819-13826. DOI:10. 1029/ mospheric boundary layer by GPS radio occultation signals re‐
98JD00806. corded in the open-loop mode[J]. Geophysical Research Letters,
Guo P,Kuo Y H,Sokolovskiy S V,et al,2011. Estimating atmo‐ 33(12):252-272. DOI:10. 1029/2006GL025955.
spheric boundary layer depth using COSMIC radio occultation da‐ Sokolovskiy S,Rocken C,Schreiner W,et al,2010. On the uncer‐
ta[J]. Journal of the Atmospheric Sciences,68(8):1703-1713. tainty of radio occultation inversions in the lower troposphere[J].
DOI:10. 1175/2011JAS3612. 1. Journal of Geophysical Research:Atmospheres,115(D22).
Hande L B,Siems S T,Manton M J,et al,2015. An evaluation of DOI:10. 1029/2010JD014058.
COSMIC radio occultation data in the lower atmosphere over the Sokolovskiy S,Sergey V,2001. Tracking tropospheric radio occulta‐
southern ocean[J]. Atmospheric Measurement Techniques,8 tion signals from low earth orbit[J]. Radio Science,36(3):483-
(1):97-107. DOI:10. 5194/amt-8-97-2015. 498. DOI:10. 1029/1999RS002305.
Hennemuth B,Lammert A,2006. Determination of the atmospheric Sokolovskiy S,Sergey,2003. Effect of superrefraction on inversions
boundary layer height from radiosonde and lidar backscatter[J]. of radio occultation signals in the lower troposphere[J]. Radio
Boundary-Layer Meteorology,120(1):181-200. DOI:10. Science,38(3):p24. 1-24. 14. DOI:10. 1029/2002RS002728.
1007/s10546-005-9035-3. White A B,Fairall C W,Thomson D W,1991. Radar observations of
Ho S P,Peng L,Anthes R A,et al,2014. Marine boundary layer humidity variability in and above the marine atmospheric bound‐
heights and their longitudinal,diurnal,and interseasonal variabil‐ ary layer[J]. Journal of Atmospheric and Oceanic Technology,8
ity in the southeastern pacific using COSMIC,CALIOP,and ra‐ (5):639-658. DOI:10. 1175/1520-0426(1991)008<0639:
diosonde data[J]. Journal of Climate,28(7):2856-2872. DOI: ROOHVI> 2. 0. CO;2.
10. 1175/JCLI-D-14-00238. 1. Wu D,Hu Y,Mccormick M P,et al,2008. Deriving marine-bound‐
Kumar K K,Jain A R,2006. L band wind profiler observations of con‐ ary-layer lapse rate from collocated CALIPSO,MODIS,and
vective boundary layer over Gadanki,India(13. 5°N,79. 2°E)[J]. AMSR-E data to study global low-cloud height statistics[J].
Radio Science,41(2):RS2004. DOI:10. 1029/2005RS003259. IEEE Geoscience and Remote Sensing Letters,5(4):649-652.
Kursinski E R,Hajj G A,Schofield J T,et al,1997. Observing earth's DOI:10. 1109/ LGRS. 2008. 2002024.
atmosphere with radio occultation measurements using the global Xie F,2014. Visiting Scientist Report 21:Investigation of methods for
positioning system[J]. Journal of Geophysical Research Atmo‐ the determination of the PBL height from RO observations using
spheres,102(D19):23429-23465. DOI:10. 1029/97JD01569. ECMWF reanalysis data[R]. SAF/ROM/DMI /REP/VS21/001.
Liu H,Kuo Y H,Sokolovskiy S,et al,2018. A quality control proce‐ Xie F,Wu D L,Ao C O,et al,2012. Advances and limitations of at‐
dure based on bending angle measurement uncertainty for radio mospheric boundary layer observations with GPS occultation over
occultation data assimilation in the tropical lower troposphere[J]. southeast Pacific Ocean[J]. Atmospheric Chemistry and Physics,
Journal of Atmospheric and Oceanic Technology,35(10):2117- 12(2):903-918. DOI:10. 5194/acp-12-903-2012.
2131. DOI:10. 1175/JTECH-D-17-0224. 1. 李斐,邹捍,周立波,等,2017. WRF模式中边界层参数化方案在藏
Medeiros B,Hall A,Stevens B,2005. What controls the mean depth 东南复杂下垫面适用性研究[J]. 高原气象,36(2):340-357.
of the PBL?[J]. Journal of Climate,18(16):3157-3172. DOI: DOI:10. 7522/j. issn. 1000-0534. 2016. 00084.
10. 1175/JCLI3417. 1. 李雪洮,梁捷宁,郭琪,等,2020. 利用大涡模式模拟黄土高原地区
Russell P B,Uthe E E,Ludwig F L,et al,1974. A comparison of at‐ 对流边界层特征[J]. 高原气象,39(3):523-531. DOI:10.
mospheric structure as observed with monostatic acoustic sounder 7522/j. issn. 1000-0534. 2019. 00050.
and lidar techniques[J]. Journal of Geophysical Research,79 廖麒翔,赵小峰,石汉青,等,2015. 基于 COSMIC资料的边界层高
(36):5555-5566. DOI:10. 1029/JC079i036p05555. 度时空特征分析[J]. 气象科学,35(6):737-743. DOI:10.
Seibert P,Beyrich F,Gryning S E,et al,2000. Review and intercom‐ 3969/2015jms. 0066.
parison of operational methods for the determination of the mix‐ 刘艳,唐南军,杨学胜,等,2015. 利用 COSMIC/GPS 掩星折射率