Page 14 - 《高原气象》2021年第5期
P. 14

5 期                         王梦晓等:青藏高原鄂陵湖结冰期升温特征研究                                          975
                 [J]. Hydrology Research,40(2):234-248. DOI:10. 2116/  Yang K,Wu H,Qin J,et al,2014. Recent climate changes over the
                  nh. 2009. 030.                                    Tibetan Plateau and their impacts on energy and water cycle:A re‐
               Schmid M,Hunziker S,Wüest A,2014. Lake surface temperatures in  view[J]. Global and Planetary Change,112:79-91. DOI:10.
                  a changing climate:A global sensitivity analysis[J]. Climatic  1016/j. gloplacha. 2013. 12. 001.
                  Change,124(1/2):301-315. DOI:10. 1007/s10584-014-1087-2.  Zhang G Q,Luo W,Chen W F,et al,2019. A robust but variable
               Sharma S,Gray D K,Read J S,2015. A global database of lake sur‐  lake expansion on the Tibetan Plateau[J]. Science Bulletin,64
                  face temperatures collected by in situ and satellite methods from  (18):1306-1309. DOI:10. 1016/j. scib. 2019. 07. 018.
                  1095-2009[J]. Climatic Change,2(1):1-19. DOI:10. 1038/  Zhang G Q,Xie H J,Qin J,et al,2014a. Estimating surface tempera‐
                  sdata. 2015. 8.                                   ture changes of lakes in the Tibetan Plateau using MODIS LST da‐
               Song C Q,Huang B,Ke L H,2013. Modeling and analysis of lake  ta[J]. Journal of Geophysical Research Atmospheres,119(14):
                  water storage changes on the Tibetan Plateau using multi-mission  8552-8567. DOI:10. 1002/2014JD021615.
                  satellite data[J]. Remote Sensing of Environment,135:25-35.  Zhang H,Shan B Q,Ao L,et al,2014b. Past atmospheric trace metal
                  DOI:10. 1016/j. rse. 2013. 03. 013.               deposition in a remote lake(Lake Ngoring)at the headwater ar‐
               Stepanenko V M,Lykossov V N,2005. Numerical modeling of heat  eas of Yellow River,Tibetan Plateau[J]. Environmental Earth
                  and moisture transfer processes in a system lake-soil[J]. Russian  Sciences,72(2):399-406. DOI:10. 1007/s12665-013-2960-4.
                  Journal for Meteorology and Hydrology,3:95-104.  Zolfaghari K,Duguay C R,Khetrollah P H,2017. Satellite-derived
               Stepanenko V,Mammarella I,Ojala A,et al,2016. Lake 2. 0:A  light extinction coefficient and its impact on thermal structure sim‐
                  model for temperature,methane,carbon dioxide and oxygen dy‐  ulations in a 1-D lake model[J]. Hydrology and Earth System Sci‐
                  namics in lakes[J]. Geoscientific Model Development,9(5):  ences,21(1):377-391. DOI:10. 5194/hess-2016-82.
                  1977-2006. DOI:10. 5194/gmd-9-1977-2016.       杜娟,文莉娟,苏东生,2019. 三套再分析资料在青藏高原湖泊模
               Stepanenko V M,Machul’skaya E E,Glagolev M V,et al,2011. Nu‐  拟研究中的适用性分析[J]. 高原气象,38(1):101-113. DOI:
                  merical modeling of methane emissions from lakes in the perma‐  10. 7522/j. issn1000-0534201800110.
                  frost zone[J]. Izvestiya,Atmospheric and Oceanic Physics,47  方楠,阳坤,拉珠,等,2017. WRF 湖泊模型对青藏高原纳木错湖
                 (2):252-264. DOI:10. 1134/s0001433811020113.       的适用性研究[J]. 高原气象,36(3):610-618. DOI:10. 7522/
               Stepanenko V M,Repina I A,Ganbat G,et al,2019. Numerical sim‐  j. issn. 1000-0534. 2016. 00038.
                  ulation of ice cover of Saline lakes[J]. Izvestiya,Atmospheric  李庚辰,刘足根,张敏,等,2015. 升温对超富营养型浅水湖泊沉积
                  and Oceanic Physics, 55 (1) : 129-138. DOI: 10. 1134/  物营养盐动态迁移的影响[J]. 生态学报,35(12):4016-4025.
                  s0001433819010092.                                DOI:10. 5846/stxb201309102244.
               Thiery W I M,Stepanenko V M,Fang X,et al,2014. Lakemip Ki‐  李照国,吕世华,文莉娟,等,2016. 一次干冷空气过境对鄂陵湖地
                  vu:Evaluating the representation of a large,deep tropical lake by  区大气边界层过程的影响[J]. 高原气象,35(5):1200-1211.
                  a set of one-dimensional lake models[J]. Tellus A:Dynamic Me‐  DOI:10. 7522/j. issn. 1000-0534. 2015. 00076.
                  teorology and Oceanography,66(1):1-18. DOI:10. 3402/tellu‐  尚盈辛,宋开山,蒋盼,等,2018. 青藏高原典型湖库光学吸收特性
                  sa. v66. 21390.                                   与光合有效辐射衰减系数初步研究[J]. 湖泊科学,30(3):
               Wan W,Long D,Hong Y,et al,2016. A lake data set for the Tibetan  802-811. DOI:10. 13448/j. cnki. jalre. 2012. 07. 030.
                  Plateau from the 1960s,2005,and 2014[J]. Scientific Data,3:  沈德福,李世杰,姜永见,等,2012. 黄河源区湖泊水环境特征及其
                  160039. DOI:10. 1038/sdata. 2016. 39.             对气候变化的响应[J]. 干旱区资源与环境,26(7):91-97.
               Weitere M,Vohmann A,Schulz N,et al,2010. Linking environmen‐  DOI:10. 7522/j. issn. 1000-0534. 2017. 00069.
                  tal warming to the fitness of the invasive clam Corbicula fluminea  宋兴宇,文莉娟,李茂善,等,2020. 不同湖泊模式对青藏高原典型
                 [J]. Global Change Biology,15(12):2838-2851. DOI:10.  湖泊适用性对比研究[J]. 高原气象,39(2):213-225. DOI:
                  10111/j. 1365-2486. 2009. 01925. X.               10. 7522/j. issn. 1000-0534. 2019. 00102.
               Wen L J,Lv S H,Li Z G,et al,2015. Impacts of the two biggest  汪关信,2020. 青海湖湖冰特征及其变化[D]. 兰州:兰州大学,
                  lakes on local temperature and precipitation in the Yellow River  1-77.
                  source region of the Tibetan Plateau[J]. Advances in Meteorolo‐  许鲁军,刘辉志,2015. 云贵高原洱海湖泊效应的数值模拟[J]. 气
                  gy,(d14):248031. DOI:10. 1155/2015/248031.        象学报,73(4):789-802.
               Wen L J,Lyu S H,Kirillin G,et al,2016. Air-lake boundary layer  杨显玉,文军,2012. 扎陵湖和鄂陵湖大气边界层特征的数值模拟
                  and performance of a simple lake parameterization scheme over  [J]. 高原气象,31(4):927-934.
                  the Tibetan highlands[J]. Tellus A:Dynamic Meteorology and  朱立平,彭萍,张国庆,等,2020. 全球变化下青藏高原湖泊在地表
                  Oceanography,68(1):31091. DOI:10. 3402/tellusa. v68.  水循环中的作用[J]. 湖泊科学,32(3):597-608. DOI:10.
                  31091.                                            18307/2020. 0301.
   9   10   11   12   13   14   15   16   17   18   19