Page 13 - 《高原气象》2021年第5期
P. 13
高 原 气 象 40 卷
974
验,评估了LAKE2. 3模式在鄂陵湖的适用性,分析 Kanamitsu M,Ebisuzaki W,Woollen J,et al,2002. Ncep-Doe amip-
了青藏高原地区的局地气候特征和湖水主要物理 Ii reanalysis(R-2)[J]. American Meteorological Society,121
(13):1631-1643. DOI:10. 1175/BAMS-83-11-1631.
特征参数对鄂陵湖冰期湖温持续上升现象的影响,
La Z,Yang K,Wang J B,et al,2016. Quantifying evaporation and
得出以下结论: its decadal change for Lake Nam-Co,central Tibetan Plateau[J].
(1) 2015-2016年湖温观测数据显示冬季鄂陵 Journal of Geophysical Research:Atmospheres,121(13):7578-
湖结冰期从开始结冰到冰完全融化,湖温会保持持 7591. DOI:10. 1002/2015JD024523.
续上升,3 m湖温可以升至6. 2 °C。 Lei R B,Leppäranta M,Erm A,et al,2011. Field investigations of
apparent optical properties of ice cover in Finnish and Estonian
(2) LAKE2. 3 模式对鄂陵湖湖温的模拟效果
lakes in winter 2009[J]. Estonian Journal of Earth Sciences,60
较好,特别是在冬季冰期,能够较为准确的模拟出
(1):50-64. DOI:10. 3176/earth. 2011. 1. 05.
湖温持续上升现象。 Leppäranta M,Lindgren E,Shirasawa K,2017. The heat budget of
(3) 敏感性实验结果显示,高原较强的向下短 lake Kilpisjärvi in the Arctic tundra[J]. Hydrology Research,48
波辐射是造成鄂陵湖冰期湖温持续上升的主要气 (4):969-980. DOI:10. 2166/nh. 2016. 171.
Leppäranta M,Lindgren E,Wen L J,et al,2019. Ice cover decay and
候因子,较大的风速、较少的降水、冰反照率和冰
heat balance in lake Kilpisjärvi in Arctic tundra[J]. Journal of
消光系数会对冰期湖温上升现象造成影响,水消光 Limnology,78(2):163-175. DOI:10. 4081/jlimnol. 2019. 1879.
系数主要影响无冰期较深层的湖温变化。 Leppäranta M,Terzhevik A,Shirasawa K,2010. Solar radiation and
ice melting in Lake Vendyurskoe,Russian Karelia[J]. Hydrology
参考文献: Research,41(1):50-62.
Li Z G,Ao Y H,Lyu S H,et al,2018. Investigation of the ice sur‐
Adrian R,Oreilly C M,Zagarese H,et al,2009. Lakes as sentinels
face Albedo in the Tibetan Plateau lakes based on the field obser‐
of climate change[J]. Limnoligy and Oceanography,54(6):
vation and modis products[J]. Journal of Glaciology,64(245):
2283-2297.
506-516. DOI:10. 1017/jog. 2018. 35.
Dokulil M T,2014. Predicting summer surface water temperatures
Li Z G,Lyu S H,Ao Y H,et al,2015. Long-term energy flux and ra‐
for large Austrian lakes in 2050 under climate change scenarios
diation balance observations over lake Ngoring,Tibetan Plateau
[J]. Hydrobiologia,731(1):19-29. DOI:10. 1007/s10750-
[J]. Atmospheric Research,155:13-25. DOI:10. 1016/j. at‐
013-1550-5.
mosres. 2014. 11. 019.
Duan A M,Xiao Z X,2015. Does the climate warming hiatus exist
Li Z G,Lyu S H,Wen L J,et al,2020. Study of freeze-thaw cycle
over the Tibetan Plateau?[J]. Scientific Reports,5(1):13711. and key radiation transfer parameters in a Tibetan Plateau lake us‐
DOI:10. 1038/srep13711.
ing LAKE2. 0 model and field observations[J]. Journal of Glaci‐
Efremova T,Palshin N,Zdorovennov R,2013. Long-term character‐ ology,45:1-16. DOI:10. 1017/jog. 2020. 87.
istics of ice phenology in Karelian lakes[J]. Estonian Journal of
Oreilly C,Sharma S,Hampton S E,et al,2015. Rapid and highly
Earth Sciences,62(1):33-41. DOI:10. 3176/earth. 2013. 04. variable warming of lake surface waters around the globe[J].
Fang X,Stefan H G,1996. Long-term lake water temperature and ice Geophysical Research Letters,42(24):399-406. DOI:10.
cover simulations/measurements[J]. Cold Regions Science and 1002/2015GL066235.
Technology,24(3):289-304. Qin B Q,Zhu G W,Gao G,et al,2009. A drinking wate crisis in
Gerken T,Biermann T,Babel W,et al,2013. A modelling investiga‐ lake Taihu,China:Linkage to climatic variability and lake man‐
tion into lake-breeze development and convection triggering in agement[J]. Environmental Management,45(1):105-112. DOI:
the Nam-Co Lake basin,Tibetan Plateau[J]. Theoretical and Ap‐ 10. 1007/s00267-009-9393-6.
plied Climatology,117(1):149-167. DOI:10. 1007/s00704- Ramp C,Delarue J,Palsbøll P J,2015. Adapting to a warmer ocean
013-0987-9. —seasonal shift of baleen whale movements over three decades
Grenfell T C,1979. The effects of ice thickness on the exchange of so‐ [J]. Plos One,10(3):1-15. DOI:10. 1371/journal. pone.
lar radiation over the polar oceans[J]. Journal of Glaciology,22 0121374·Source:PubMed.
(87):305-320. Rösner R,Dörthe C,Navarra M,et al,2012. Trend analysis of week‐
Hardenbicker P,Viergutz C,Becker A,et al,2017. Water tempera‐ ly temperatures and oxygen concentrations during summer stratifi‐
ture increases in the river Rhine in response to climate change[J]. cation in Lake Plußsee:A long-term study[J]. Limnology and
Regional Environmental Change,17(1):299-308. DOI:10. Oceanography,57(5):1479-1491. DOI:10. 4319/lo. 2012. 57.
1007/s10113-016-1006-3. 5. 1479.
Immerzeel W W,Ludovicus P H,Marc F P,2010. Climate change Saloranta T,Forsius M,Arvola L,et al,2009. Impacts of projected
will affect the asian water towers[J]. Journal of Glaciology,328: climate change on thermodynamics of a shallow and deep lake in
1382-1385. DOI:10. 1126/science. 1187443. Finland:Model simulations and Bayesian uncertainty analysis