Page 123 - 《高原气象》2021年第5期
P. 123
高 原 气 象 40 卷
1084
Global Drop Size Distributions[J]. Journal of the Atmospheric breakup of raindrops and its implications for the shapes of rain‐
Sciences,75(5):1453-1476. DOI:org/10. 1175/JAS-D-17- drop size distributions[J]. Journal of the Atmospheric Sciences,
0242. 1. 61(7):777-794. DOI:org/10. 1175/1520-0469(2004)061<
Friedrich K,Kalina E A,Masters F J,et al,2013a. Drop-size distri‐ 0777:ANROCB>2. 0. CO;2.
butions in thunderstorms measured by optical disdrometers during Porcù F,D’Adderio L P,Prodi F,et al,2014. Rain drop size distri‐
VORTEX2[J]. Monthly Weather Review,141(4):1182-1203. bution over the Tibetan Plateau[J]. Atmospheric Research,150
DOI:org/10. 1175/MWR-D-12-00116. 1. (150):1-30. DOI:10. 1016/j. atmosres. 2014. 07. 005.
Friedrich K,Stephanie H,Masters F J,et al,2013b. Articulating and Porcù F,D'Adderio LP,Prodi F,et al,2013. Effects of altitude on
stationary PARSIVEL disdrometer measurements in conditions maximum raindrop size and fall velocity as limited by collisional
with strong winds and heavy rainfall[J]. Journal of Atmospheric breakup[J]. Journal of the Atmospheric Sciences,70(4):1129-
and Oceanic Technology,30(9):2063-2080. DOI:org/10. 1134. DOI:org/10. 1175/JAS-D-12-0100. 1.
1175/JTECH-D-12-00254. 1. Prat O P,Barros A P,Testik F Y,2012. On the Influence of Raindrop
Fulton R A,Breidenbach J P,Seo D J,et al,1998. The WSR-88D Collision Outcomes on Equilibrium Drop Size Distributions[J].
rainfall algorithm[J]. Weather and Forecasting,13(2):377- Journal of the Atmospheric Sciences,69(5):1534-1546. DOI:
395. DOI:org/10. 1175/1520-0434(1998)013<0377:TWRA> org/10. 1175/JAS-D-11-0192. 1.
2. 0. CO;2. Rosenfeld D,Ulbrich C W,2003. Cloud microphysical properties,
Gatlin P N,Thurai M,Bringi V N,et al,2015. Searching for large processes,and rainfall estimation opportunities[C]. Radar and
raindrops:A global summary of Two-Dimensional Video Dis‐ Atmospheric Science:A Collection of Essays in Honor of David
drometer observations[J]. Journal of Applied Meteorology and Atlas,Meteorological Monographs,American Meteor Society,
Climatology,54(5):1069-1089. DOI:org/10. 1175/JAMC-D- No. 52,237-258.
14-0089. 1. Ryzhkov A V,Kumjian M R,Ganson S M,et al,2013. Polarimetric
Hu Z,Srivastava R C,1995. Evolution of raindrop size distribution radar characteristics of melting hail. Part I:Theoretical simula‐
by coalescence,breakup,and evaporation:Theory and observa‐ tions using spectral microphysical modeling[J]. Journal of Ap‐
tion[J]. Journal of the Atmospheric Sciences,52(10):1761- plied Meteorology and Climatology,52(12):2849-2870. DOI:
1783. DOI:org/10. 1175/1520-0469(1995)052<1761:EORSDB org/10. 1175/JAMC-D-13-074. 1.
>2. 0. CO;2. Sauvageot H,Koffi M,2000. Multimodal raindrop size distributions
Jaffrain J,Berne A,2011. Experimental quantification of the sampling [J]. Journal of the Atmospheric Sciences,57(15):2480-2492.
uncertainty associated with measurements from PARSIVEL dis‐ DOI:org/10. 1175/1520-0469(2000)057<2480:MRSD>2. 0.
drometers[J]. Journal of Hydrometeorology,12(3):352-370. CO;2.
DOI:org/10. 1175/2010JHM1244. 1. Sekhon R S,Srivastava R C,1971. Doppler radar observations of
Joss J,Gori E G,1978. Shapes of raindrop size distributions[J]. Jour‐ drop-size distributions in a thunderstorm[J]. Journal of the Atmo‐
nal of Applied Meteorology and Climatology,17(7):1054- spheric Sciences,28(6):983-994. DOI:org/10. 1175/1520-
1061. DOI:org/10. 1175/1520-0450(1978)017<1054:SORSD> 0469(1971)028<0983:DROODS>2. 0. CO;2.
2. 0. CO;2 Sempere T,Porra` D J,Creutin J D,1994. A general formulation for
LÖffler-Mang M,Joss J,2000.An optical disdrometer for measur‐ raindrop size distribution[J]. Journal of Applied Meteorology and
ing size and velocity of hydrometeors[J]. Journal of Atmospheric Climatology,33(12):1494-1502. DOI:org/10. 1175/1520-
and Oceanic Technology,17(2):130-139. DOI:org/10. 1175/ 0450(1994)033<1494:AGFFRS>2. 0. CO;2.
1520-0426(2000)017<0130:AODFMS>2. 0. CO;2. Sempere T,Porra` D J,Creutin J D,1998. Experimental evidence of
Low T B,List R,1982a. Collision,coalescence,and breakup of rain‐ a general description of raindrop size distribution properties[J].
drops. Part I:Experimentally established coalescence efficiencies Journal of Geophysical Research:Atmospheres, 103(D2):
and fragment size distributions in breakup[J]. Journal of the At‐ 1785-1797. DOI:org/10. 1029/97JD02065.
mospheric Sciences,39(7):1591-1606. DOI:org/10. 1175/ Straub W,Behenga K,Seifert A,et al,2010. Numerical investiga‐
1520-0469(1982)039<1591:CCABOR>2. 0. CO;2. tion of collision-induced breakup of raindrops. Part II:Parameter‐
Low T B,List R,1982b. Collision,coalescence,and breakup of rain‐ izations of coalescence efficiencies and fragment size distributions
drops. Part II:Parameterization of fragment size distributions[J]. [J]. Journal of the Atmospheric Sciences,67(3):576-588.
Journal of the Atmospheric Sciences,39(7):1607-1619. DOI: DOI:org/10. 1175/2009JAS3175. 1.
org/10. 1175/1520-0469 (1982) 039<1607: CCABOR>2. 0. Testud J S,Oury R A,Black P,et al,2001. The concept of "normal‐
CO;2. ized" distribution to describe raindrop spectra:A tool for cloud
Marshall J S,Palmer W M,1948. The distribution of raindrops with physics and cloud remote sensing[J]. Journal of Applied Meteo‐
size[J]. Journal of Meteorology,5(4):165-166. DOI:org/10. rology,40:1118-1140. DOI:10. 1175/1520-0450(2001)040<
1175/1520-0469(1948)005<0165:TDORWS>2. 0. CO;2. 1118:tcondt>2. 0. co;2.
McFarquhar G M,2004. A new representation of collision-induced Thurai M,Bringi V N,May P T,2010. CPOL radar-derived drop size