Page 29 - 《爆炸与冲击》2026年第01期
P. 29
第 46 卷 李 尧,等: 结构体高速倾斜入水的尾拍载荷及姿态稳定性 第 1 期
载系数对入水倾角的变化均不敏感。
(2) 从结构体的三向力矩峰值看,空泡溃灭阶段为入水过程的最危险工况。其中,滚转、偏航力矩系
数相较于入水砰击、首次尾拍、二次尾拍阶段均高出两个数量级。俯仰力矩系数峰值在入水砰击、首次
尾拍随入水倾角的减小而增大,但在二次尾拍阶段对入水倾角变化不敏感。当入水倾角由 60°增至
90°后,空泡溃灭阶段的滚转、俯仰力矩系数峰值的绝对值分别增大了 46.9%、47.1%。
(3) 附体载荷方面,尾舵在空泡溃灭阶段轴向力系数比尾拍阶段高出 1~2 个数量级,法向力系数则
高出 2~3 个数量级,随着入水倾角减小,首次尾拍轴、法向载荷峰值发生迟滞。在 4 个尾舵中,垂直尾
舵在空泡溃灭阶段轴向载荷峰值随入水倾角的增大而增大,而水平尾舵随入水倾角的变化规律相反。
大倾角入水会恶化空泡溃灭时刻垂直尾舵的轴向载荷环境,但会增益水平尾舵的轴向载荷环境。80°~
90°大倾角入水有利于改善空泡溃灭时刻水平尾舵的法向载荷环境,但会恶化垂直尾舵的法向载荷环境,
能够减小空泡溃灭阶段水平尾舵的俯仰力矩。
(4) 入水稳定性方面,空泡收缩溃灭瞬间,结构体处于近似静止状态,三向角速度趋近于零,尾空泡
击打结构体尾部的短暂过程显著抑制了其三向转动。在入水砰击、首次尾拍阶段,俯仰角速度峰值的绝
对值随入水倾角的减小而减小;在二次尾拍阶段,俯仰角速度峰值对入水倾角变化不敏感。综合来看,
5°攻角入水工况下,结构体以 90°倾角入水三向姿态角变化最小,入水稳定性最佳。
参考文献:
[1] YAN G X, PAN G, SHI Y, et al. Experimental and numerical investigation of water impact on air-launched AUVs [J]. Ocean
Engineering, 2018, 167: 156–168. DOI: 10.1016/j.oceaneng.2018.08.044.
[2] 王晓辉, 李鹏, 孙士明, 等. 射弹高速入水尾拍载荷和弹道特性的数值研究 [J]. 船舶力学, 2022, 26(8): 1111–1119. DOI:
10.3969/j.issn.1007-7294.2022.08.001.
WANG X H, LI P, SUN S M, et al. Numerical study on hydrodynamic and ballistic characteristics of projectile’s high-speed
water-entry process [J]. Journal of Ship Mechanics, 2022, 26(8): 1111–1119. DOI: 10.3969/j.issn.1007-7294.2022.08.001.
[3] WORTHINGTON A M, COLE R S. V. Impact with a liquid surface, studied by the aid of instantaneous photography [J].
Philosophical Transactions of the Royal Society of London, Series A: Containing Papers of a Mathematical or Physical
Character, 1897, 189: 137–148. DOI: 10.1098/rsta.1897.0005.
[4] MAY A. Vertical entry of missiles into water [J]. Journal of Applied Physics, 1952, 23(12): 1362–1372. DOI: 10.1063/1.
1702076.
[5] MAY A. Review of water-entry theory and data [J]. Journal of Hydronautics, 1970, 4(4): 140–142. DOI: 10.2514/3.62851.
[6] VON KARMAN T. The impact on seaplane floats during landing [R]. Washington: National Advisory Committee for
Aeronautics, 1929.
[7] WAGNER H. Phenomena associated with impacts and sliding on liquid surfaces [J]. Journal of Applied Mathematics and
Mechanics, 1932, 12(4): 193–215.
[8] KOROBKIN A A, PUKHNACHOV V V. Initial stage of water impact [J]. Annual Review of Fluid Mechanics, 1988, 20:
159–185. DOI: 10.1146/annurev.fl.20.010188.001111.
[9] FALTINSEN O M. Hydroelastic slamming [J]. Journal of Marine Science and Technology, 2000, 5(2): 49–65. DOI:
10.1007/s007730070011.
[10] 袁绪龙, 栗敏, 丁旭拓, 等. 跨介质航行器高速入水冲击载荷特性 [J]. 兵工学报, 2021, 42(7): 1440–1449. DOI: 10.3969/j.
issn.1000-1093.2021.07.011.
YUAN X L, LI M, DING X T, et al. Impact load characteristics of a trans-media vehicle during high-speed water-entry [J].
Acta Armamentarii, 2021, 42(7): 1440–1449. DOI: 10.3969/j.issn.1000-1093.2021.07.011.
[11] 刘喜燕, 袁绪龙, 罗凯, 等. 预置舵角对跨介质航行体入水尾拍运动影响试验 [J]. 兵工学报, 2023, 44(6): 1632–1642. DOI:
10.12382/bgxb.2022.1117.
LIU X Y, YUAN X L, LUO K, et al. Experimental investigation of the influence of preset rudder angle on tail-slapping of a
trans-media vehicle during water entry [J]. Acta Armamentarii, 2023, 44(6): 1632–1642. DOI: 10.12382/bgxb.2022.1117.
011101-15

