Page 113 - 《爆炸与冲击》2026年第01期
P. 113

第 46 卷            陈    丁,等: 非药式水下爆炸冲击波加载的PD-SPH建模与分析                            第 1 期

               [6]   周章涛, 刘建湖, 刘国振, 等. 水下爆炸空化研究进展 [J]. 装备环境工程, 2023, 20(9): 12–25. DOI: 10.7643/issn.1672-9242.
                    2023.09.002.
                    ZHOU Z T, LIU J H, LIU G Z, et al. Research progress of underwater explosion cavitation [J]. Equipment Environmental
                    Engineering, 2023, 20(9): 12–25. DOI: 10.7643/issn.1672-9242.2023.09.002.
               [7]   柳占立, 初东阳, 王涛, 等. 爆炸和冲击载荷下金属材料及结构的动态失效仿真 [J]. 应用数学和力学, 2021, 42(1): 1–14.
                    DOI: 10.21656/1000-0887.410262.
                    LIU Z L, CHU D Y, WANG T, et al. Dynamic failure simulation of metal materials and structures under blast and impact
                    loading [J]. Applied Mathematics and Mechanics, 2021, 42(1): 1–14. DOI: 10.21656/1000-0887.410262.
               [8]   MONAGHAN J J. Simulating free surface flows with SPH [J]. Journal of Computational Physics, 1994, 110(2): 399–406.
                    DOI: 10.1006/jcph.1994.1034.
               [9]   LIU M B, ZHANG Z L. Smoothed particle hydrodynamics (SPH) for modeling fluid-structure interactions [J]. Science China
                    Physics, Mechanics & Astronomy, 2019, 62(8): 984701. DOI: 10.1007/s11433-018-9357-0.
               [10]   周若璞, 曾治鑫, 张雄. 超高速碰撞下相变效应的交错网格物质点法研究 [J]. 计算力学学报, 2024, 41(1): 81–90. DOI:
                    10.7511/jslx20230816006.
                    ZHOU R P, ZENG Z X, ZHANG X. The staggered grid material point method (SGMP) simulation of phase transformation in
                    hyper-velocity impact [J]. Chinese Journal of Computational Mechanics, 2024, 41(1): 81–90. DOI: 10.7511/jslx20230816006.
               [11]   SULSKY  D,  CHEN  Z,  SCHREYER  H  L.  A  particle  method  for  history-dependent  materials  [J].  Computer  Methods  in
                    Applied Mechanics and Engineering, 1994, 118(1/2): 179–196. DOI: 10.1016/0045-7825(94)90112-0.
               [12]   SILLING S A, EPTON M, WECKNER O, et al. Peridynamic states and constitutive modeling [J]. Journal of Elasticity, 2007,
                    88(2): 151–184. DOI: 10.1007/s10659-007-9125-1.
               [13]   黄丹, 章青, 乔丕忠, 等. 近场动力学方法及其应用 [J]. 力学进展, 2010, 40(4): 448–459. DOI: 10.6052/1000-0992-2010-4-
                    J2010-002.
                    HUANG  D,  ZHANG  Q,  QIAO  P  Z,  et  al.  A  review  on  peridynamics  (PD)  method  and  its  applications  [J].  Advances  in
                    Mechanics, 2010, 40(4): 448–459. DOI: 10.6052/1000-0992-2010-4-J2010-002.
               [14]   吴远丽, 刘立胜, 赖欣, 等. 陶瓷复合结构抗侵彻行为的近场动力学研究 [J]. 计算机仿真, 2021, 38(10): 268–274. DOI:
                    10.3969/j.issn.1006-9348.2021.10.054.
                    WU Y L, LIU L S, LAI X, et al. Peridynamics simulation of ceramic composite structures against penetration [J]. Computer
                    Simulation, 2021, 38(10): 268–274. DOI: 10.3969/j.issn.1006-9348.2021.10.054.
               [15]   陈洋, 王肇喜, 翟师慧, 等. 3D  打印点阵夹芯结构冲击损伤的近场动力学模拟 [J]. 爆炸与冲击, 2024, 44(3): 033101. DOI:
                    10.11883/bzycj-2023-0124.
                    CHEN Y, WANG Z X, ZHAI S H, et al. Peridynamic simulation of impact damage to 3D printed lattice sandwich structure [J].
                    Explosion and Shock Waves, 2024, 44(3): 033101. DOI: 10.11883/bzycj-2023-0124.
               [16]   王涵, 黄丹, 徐业鹏, 等. 非常规态型近场动力学热黏塑性模型及其应用 [J]. 力学学报, 2018, 50(4): 810–819. DOI:
                    10.6052/0459-1879-18-113.
                    WANG H, HUANG D, XU Y P, et al. Non-ordinary state-based peridynamic thermal-viscoplastic model and its application [J].
                    Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(4): 810–819. DOI: 10.6052/0459-1879-18-113.
               [17]   马福临, 杨娜娜, 赵天佑, 等. 冲击波-破片群联合作用下舰船复合材料结构近场动力学损伤模拟 [J]. 爆炸与冲击, 2022,
                    42(3): 033304. DOI: 10.11883/bzycj-2021-0080.
                    MA F L, YANG N N, ZHAO T Y, et al. Peridynamic damage simulation of ship composite structures subjected to combined
                    action of shock wave and fragments [J]. Explosion and Shock Waves, 2022, 42(3): 033304. DOI: 10.11883/bzycj-2021-0080.
               [18]   SUN P N, LE TOUZÉ D, OGER G, et al. An accurate SPH volume adaptive scheme for modeling strongly-compressible
                    multiphase flows. Part 2: extension of the scheme to cylindrical coordinates and simulations of 3D axisymmetric problems
                    with experimental validations [J]. Journal of Computational Physics, 2021, 426: 109936. DOI: 10.1016/j.jcp.2020.109936.
               [19]   LIANG C, HUANG W X, CHEN D. A pressure-dependent adaptive resolution scheme for smoothed particle hydrodynamics
                    simulation of underwater explosion [J]. Ocean Engineering, 2023, 270: 113695. DOI: 10.1016/j.oceaneng.2023.113695.
               [20]   姚学昊, 陈丁, 武立伟, 等. 流固耦合破坏分析的多分辨率           PD-SPH  方法 [J]. 力学学报, 2022, 54(12): 3333–3343. DOI:
                    10.6052/0459-1879-22-268.
                    YAO X H, CHEN D, WU L W, et al. A multi-resolution PD-SPH coupling approach for structural failure under fluid-structure


                                                         011107-13
   108   109   110   111   112   113   114   115   116   117   118