Page 114 - 《爆炸与冲击》2026年第01期
P. 114

第 46 卷            陈    丁,等: 非药式水下爆炸冲击波加载的PD-SPH建模与分析                            第 1 期

                    interaction [J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(12): 3333–3343. DOI: 10.6052/0459-1879-
                    22-268.
               [21]   时浩天, 郭力. 模拟流体冲击致结构破坏问题的            SPH-PD  耦合方法 [J]. 振动与冲击, 2022, 41(17): 170–176,203. DOI:
                    10.13465/j.cnki.jvs.2022.17.021.
                    SHI H T, GUO L. SPH-PD coupled method for simulation of structure failure impacted by fluid [J]. Journal of Vibration and
                    Shock, 2022, 41(17): 170–176,203. DOI: 10.13465/j.cnki.jvs.2022.17.021.
               [22]   SUN W K, ZHANG L W, LIEW K M. A smoothed particle hydrodynamics-peridynamics coupling strategy for modeling
                    fluid-structure interaction problems [J]. Computer Methods in Applied Mechanics and Engineering, 2020, 371: 113298. DOI:
                    10.1016/j.cma.2020.113298.
               [23]   SHI  H  T,  YUAN  G  Y,  NI  B  Y,  et  al.  Quasi-brittle  ice  breaking  mechanisms  by  high-velocity  water  jet  impacts:  an
                    investigation based on PD-SPH coupling model and experiments [J]. Journal of the Mechanics and Physics of Solids, 2024,
                    191: 105783. DOI: 10.1016/j.jmps.2024.105783.
               [24]   HUANG X P, ZHU B, CHEN Y M. A coupled and parallel peridynamics: SPH modeling and simulation of buried explosion
                    induced soil fragmentation and cratering [J]. Computers and Geotechnics, 2024, 178: 106942. DOI: 10.1016/j.compgeo.2024.
                    106942.
               [25]   YAO  X  H,  HUANG  D.  Coupled  PD-SPH  modeling  for  fluid-structure  interaction  problems  with  large  deformation  and
                    fracturing [J]. Computers & Structures, 2022, 270: 106847. DOI: 10.1016/j.compstruc.2022.106847.
               [26]   REN B, FAN H F, BERGEL G L, et al. A peridynamics-SPH coupling approach to simulate soil fragmentation induced by
                    shock waves [J]. Computational Mechanics, 2015, 55(2): 287–302. DOI: 10.1007/s00466-014-1101-6.
               [27]   JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures
                    and pressures [J]. Engineering Fracture Mechanics, 1985, 21: 31–48. DOI: 10.1016/0013-7944(85)90052-9.
               [28]   BØRVIK  T,  LANGSETH  M,  HOPPERSTAD  O  S,  et  al.  Ballistic  penetration  of  steel  plates  [J].  International  Journal  of
                    Impact Engineering, 1999, 22(9/10): 855–886. DOI: 10.1016/S0734-743X(99)00011-1.
               [29]   任鹏. 非药式水下冲击波加载技术及铝合金结构抗冲击特性研究 [D]. 哈尔滨: 哈尔滨工业大学, 2014.
                    REN  P.  Research  on  non-explosive  underwater  shock  loading  technique  and  blast  resistant  properties  of  aluminium  alloy
                    structures [D]. Harbin: Harbin Institute of Technology, 2014.
               [30]   MARRONE  S,  ANTUONO  M,  COLAGROSSI  A,  et  al.  δ-SPH  model  for  simulating  violent  impact  flows  [J].  Computer
                    Methods in Applied Mechanics and Engineering, 2011, 200(13): 1526–1542. DOI: 10.1016/j.cma.2010.12.016.
               [31]   CHEN D, HUANG W X, LIANG C. A SPH method of high accuracy and efficiency for low and medium Reynolds number
                    flow problems [J]. Computational Particle Mechanics, 2024, 11(4): 1613–1626. DOI: 10.1007/s40571-023-00682-y.
               [32]   XU  J  G,  WU  G,  FENG  D  C,  et  al.  Probabilistic  multi-hazard  fragility  analysis  of  RC  bridges  under  earthquake-tsunami
                    sequential events [J]. Engineering Structures, 2021, 238: 112250. DOI: 10.1016/j.engstruct.2021.112250.
               [33]   LIU  M  B,  XIE  W  P,  LIU  G  R.  Modeling  incompressible  flows  using  a  finite  particle  method  [J].  Applied  Mathematical
                    Modelling, 2005, 29(12): 1252–1270. DOI: 10.1016/j.apm.2005.05.003.
               [34]   CHEN D, YAO X H, HUANG D, et al. A multi-resolution smoothed particle hydrodynamics with multi-GPUs acceleration for
                    three-dimensional fluid-structure interaction problems [J]. Ocean Engineering, 2024, 296: 117017. DOI: 10.1016/j.oceaneng.
                    2024.117017.
               [35]   GERARD G, SLATER H. The impact tube: a new experimental technique for applying impulse loads [C]//TATNALL F G.
                    Symposium on Impact Testing. Phila: ASTM, 1956: 94–109. DOI: 10.1520/STP47581S.
               [36]   陈丁, 黄文雄, 黄丹. 光滑粒子法中的摩擦接触算法及其在含界面土体变形问题中的应用 [J]. 岩土力学, 2024, 45(3):
                    885–894. DOI: 10.16285/j.rsm.2023.0353.
                    CHEN D, HUANG W X, HUANG D. A frictional contact algorithm in smoothed particle method with application in large
                    deformation of soils [J]. Rock and Soil Mechanics, 2024, 45(3): 885–894. DOI: 10.16285/j.rsm.2023.0353.
                                                                                          (责任编辑    张凌云)









                                                         011107-14
   109   110   111   112   113   114   115   116   117   118   119