Page 114 - 《爆炸与冲击》2026年第01期
P. 114
第 46 卷 陈 丁,等: 非药式水下爆炸冲击波加载的PD-SPH建模与分析 第 1 期
interaction [J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(12): 3333–3343. DOI: 10.6052/0459-1879-
22-268.
[21] 时浩天, 郭力. 模拟流体冲击致结构破坏问题的 SPH-PD 耦合方法 [J]. 振动与冲击, 2022, 41(17): 170–176,203. DOI:
10.13465/j.cnki.jvs.2022.17.021.
SHI H T, GUO L. SPH-PD coupled method for simulation of structure failure impacted by fluid [J]. Journal of Vibration and
Shock, 2022, 41(17): 170–176,203. DOI: 10.13465/j.cnki.jvs.2022.17.021.
[22] SUN W K, ZHANG L W, LIEW K M. A smoothed particle hydrodynamics-peridynamics coupling strategy for modeling
fluid-structure interaction problems [J]. Computer Methods in Applied Mechanics and Engineering, 2020, 371: 113298. DOI:
10.1016/j.cma.2020.113298.
[23] SHI H T, YUAN G Y, NI B Y, et al. Quasi-brittle ice breaking mechanisms by high-velocity water jet impacts: an
investigation based on PD-SPH coupling model and experiments [J]. Journal of the Mechanics and Physics of Solids, 2024,
191: 105783. DOI: 10.1016/j.jmps.2024.105783.
[24] HUANG X P, ZHU B, CHEN Y M. A coupled and parallel peridynamics: SPH modeling and simulation of buried explosion
induced soil fragmentation and cratering [J]. Computers and Geotechnics, 2024, 178: 106942. DOI: 10.1016/j.compgeo.2024.
106942.
[25] YAO X H, HUANG D. Coupled PD-SPH modeling for fluid-structure interaction problems with large deformation and
fracturing [J]. Computers & Structures, 2022, 270: 106847. DOI: 10.1016/j.compstruc.2022.106847.
[26] REN B, FAN H F, BERGEL G L, et al. A peridynamics-SPH coupling approach to simulate soil fragmentation induced by
shock waves [J]. Computational Mechanics, 2015, 55(2): 287–302. DOI: 10.1007/s00466-014-1101-6.
[27] JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures
and pressures [J]. Engineering Fracture Mechanics, 1985, 21: 31–48. DOI: 10.1016/0013-7944(85)90052-9.
[28] BØRVIK T, LANGSETH M, HOPPERSTAD O S, et al. Ballistic penetration of steel plates [J]. International Journal of
Impact Engineering, 1999, 22(9/10): 855–886. DOI: 10.1016/S0734-743X(99)00011-1.
[29] 任鹏. 非药式水下冲击波加载技术及铝合金结构抗冲击特性研究 [D]. 哈尔滨: 哈尔滨工业大学, 2014.
REN P. Research on non-explosive underwater shock loading technique and blast resistant properties of aluminium alloy
structures [D]. Harbin: Harbin Institute of Technology, 2014.
[30] MARRONE S, ANTUONO M, COLAGROSSI A, et al. δ-SPH model for simulating violent impact flows [J]. Computer
Methods in Applied Mechanics and Engineering, 2011, 200(13): 1526–1542. DOI: 10.1016/j.cma.2010.12.016.
[31] CHEN D, HUANG W X, LIANG C. A SPH method of high accuracy and efficiency for low and medium Reynolds number
flow problems [J]. Computational Particle Mechanics, 2024, 11(4): 1613–1626. DOI: 10.1007/s40571-023-00682-y.
[32] XU J G, WU G, FENG D C, et al. Probabilistic multi-hazard fragility analysis of RC bridges under earthquake-tsunami
sequential events [J]. Engineering Structures, 2021, 238: 112250. DOI: 10.1016/j.engstruct.2021.112250.
[33] LIU M B, XIE W P, LIU G R. Modeling incompressible flows using a finite particle method [J]. Applied Mathematical
Modelling, 2005, 29(12): 1252–1270. DOI: 10.1016/j.apm.2005.05.003.
[34] CHEN D, YAO X H, HUANG D, et al. A multi-resolution smoothed particle hydrodynamics with multi-GPUs acceleration for
three-dimensional fluid-structure interaction problems [J]. Ocean Engineering, 2024, 296: 117017. DOI: 10.1016/j.oceaneng.
2024.117017.
[35] GERARD G, SLATER H. The impact tube: a new experimental technique for applying impulse loads [C]//TATNALL F G.
Symposium on Impact Testing. Phila: ASTM, 1956: 94–109. DOI: 10.1520/STP47581S.
[36] 陈丁, 黄文雄, 黄丹. 光滑粒子法中的摩擦接触算法及其在含界面土体变形问题中的应用 [J]. 岩土力学, 2024, 45(3):
885–894. DOI: 10.16285/j.rsm.2023.0353.
CHEN D, HUANG W X, HUANG D. A frictional contact algorithm in smoothed particle method with application in large
deformation of soils [J]. Rock and Soil Mechanics, 2024, 45(3): 885–894. DOI: 10.16285/j.rsm.2023.0353.
(责任编辑 张凌云)
011107-14

