Page 177 - 《爆炸与冲击》2025年第12期
P. 177
第 45 卷 郭士旭,等: 接触爆炸条件下聚脲涂层对RC基板层裂和贯穿的影响 第 12 期
(1) 在爆炸波传播作用过程中,与 RC 裸板相比,背面聚脲涂层对 RC 基板的压缩坑没有影响,但会
对 RC 基板的层裂破坏产生影响。
(2) 在 RC 裸板背面,拉伸波与压缩波形成的净应力波始终是拉伸波;而在背面喷涂聚脲 RC 基板
中,紧邻混凝土/聚脲界面的净应力波是压缩波,在更深处的混凝土中,净应力波才是拉伸波。聚脲涂层
中透射的压缩波对混凝土层裂的影响有限。
(3) 背面喷涂聚脲后,混凝土/聚脲界面仅影响 RC 基板的第 1 次层裂,首次层裂后的层裂过程与
RC 裸板相同。
(4) 发生临界层裂(只发生 1 次层裂)时,聚脲涂层可以提高 RC 基板的临界层裂抗力,但层裂深度会
增大,层裂产生的混凝土破片尺寸可能变大。
(5) 发生贯穿时,聚脲涂层会使 RC 基板第 1 次层裂深度显著增加,但层裂次数减少;聚脲涂层对
RC 基板的总层裂深度和贯穿影响较小。
(6) RC 裸板的贯穿预估方法可以扩展应用于背面喷涂聚脲的 RC 基板。其中,Morishita 等 [41] 的经
验公式的适用性得到了接触爆炸试验的验证,并给出了其适用条件。
需要指出的是,接触爆炸过程非常复杂,爆炸波传播作用在炸药起爆后极短时间内占主导,之后爆
炸产物会加剧 RC 板的局部破坏 [27] ;此外,应力波在钢筋附近会发生弥散 [4,23] 。本文并未考虑爆炸产物和
钢筋的影响。
参考文献:
[1] SHI S, LIAO Y, PENG X, et al. Behavior of polyurea-woven glass fiber mesh composite reinforced RC slabs under contact
explosion [J]. International Journal of Impact Engineering., 2019, 132: 103335. DOI: 10.1016/j.ijimpeng.2019.103335.
[2] TU H, FUNG T C, TAN K H, et al. An analytical model to predict the compressive damage of concrete plates under contact
detonation [J]. International Journal of Impact Engineering, 2019, 134: 103344. DOI: 10.1016/j.ijimpeng.2019.103344.
[3] 杨建超, 王幸, 张强, 等. 钢筋混凝土板震塌碎片特性试验 [J]. 科学技术与工程, 2021, 21(5): 1690–1695. DOI: 10.3969/j.
issn.1671-1815.2021.05.002.
YANG J C, WANG X, ZHANG Q, et al. Experimental study on the fragments characteristics of reinforced concrete slab
caused by collapsing [J]. Science Technology and Engineering, 2021, 21(5): 1690–1695. DOI: 10.3969/j.issn.1671-1815.2021.
05.002.
[4] HUPFAUF M, GEBBEKEN N. Secondary debris resulting from concrete slabs subjected to contact detonations [J]. Advances
in Structural Engineering, 2022, 25(7): 1373–1385. DOI: 10.1177/13694332221080614.
[5] GUO S, HE X, LIU F, et al. Fragmentation behavior and velocity formula for secondary fragments from RC slabs during
contact explosions [J]. Engineering Failure Analysis, 2025, 167: 109047. DOI: 10.1016/j.engfailanal.2024.109047.
[6] US Department of Defense. Structures to resist the effects of accidental explosions, with change 2: UFC 3-340-02 [S].
Washington: US Department of Defense, 2008: 583-600.
[7] VAN AMELSFORT R, WEERHEIJM J. The failure mode of concrete slabs due to contact charges [R]. Rijswijk
(Netherlands): Prins Maurits Laboratory, 1988.
[8] 颜海春, 方秦, 陈力. 遮弹层震塌碎块对成层式结构顶板的冲击破坏效应 [J]. 解放军理工大学学报 (自然科学版), 2008,
9(1): 52–56. DOI: 10.7666/j.issn.1009-3443.20080111.
YAN H C, FANG Q, CHEN L. Damage effect on top plate of layered structure under impact of falling mass from blast layer [J].
Journal of PLA University of Science and Technology, 2008, 9(1): 52–56. DOI: 10.7666/j.issn.1009-3443.20080111.
[9] GUO S, LIU F, CHEN J, et al. Dynamic response and blast resistance mechanism of polyurea coating on RC slab during
contact explosions [J]. Construction and Building Materials, 2024, 411: 134271. DOI: 10.1016/j.conbuildmat.2023.134271.
[10] IQBAL N, TRIPATHI M, PARTHASARATHY S, et al. Polyurea coatings for enhanced blast-mitigation: a review [J]. Royal
Society of Chemistry Advances, 2016, 6(111): 109706–109717. DOI: 10.1039/c6ra23866a.
[11] RAMAN S N, NGO T, MENDIS P, et al. Elastomeric polymers for retrofitting of reinforced concrete structures against the
explosive effects of blast [J]. Advances in Materials Science and Engineering, 2012, 2012(1): 754142. DOI: 10.1155/2012/
125101-11

