Page 179 - 《爆炸与冲击》2025年第12期
P. 179
第 45 卷 郭士旭,等: 接触爆炸条件下聚脲涂层对RC基板层裂和贯穿的影响 第 12 期
10.1177/20414196241264026.
[27] 岳松林, 王明洋, 张宁, 等. 混凝土板在接触爆炸作用下的震塌和贯穿临界厚度计算方法 [J]. 爆炸与冲击, 2016, 36(4):
472–482. DOI: 10.11883/1001-1455(2016)04-0472-11.
YUE S L, WANG M Y, ZHANG N, et al. A method for calculating critical spalling and perforating thicknesses of concrete
slabs subjected to contact explosion [J]. Explosion and Shock Waves, 2016, 36(4): 472–482. DOI: 10.11883/1001-1455
(2016)04-0472-11.
[28] 高矗, 孔祥振, 方秦, 等. 混凝土中爆炸应力波衰减规律的数值模拟研究 [J]. 爆炸与冲击, 2022, 42(12): 123202. DOI:
10.11883/bzycj-2022-0041.
GAO C, KONG X Z, FANG Q, et al. Numerical study on attenuation of stress wave in concrete subjected to explosion [J].
Explosion and Shock Waves, 2022, 42(12): 123202. DOI: 10.11883/bzycj-2022-0041.
[29] 孙玉祥, 王杰, 武海军, 等. 混凝土高压状态方程实验与数值模拟研究 [J]. 爆炸与冲击, 2020, 40(12): 121401. DOI:
10.11883/bzycj-2020-0002.
SUN Y X, WANG J, WU H J, et al. Experiment and simulation on high-pressure equation of state for concrete [J]. Explosion
and Shock Waves, 2020, 40(12): 121401. DOI: 10.11883/bzycj-2020-0002.
[30] HARTMANN T, PIETASCH A, GEBBEKEN N. A hydrocode material model for concrete [J]. International Journal of
Protective Structures, 2010, 1(4): 443–468. DOI: 10.1260/2041-4196.1.4.443.
[31] RIEDEL W, MAYRHOFER C, THOMA K, et al. Engineering and numerical tools for explosion protection of reinforced
concrete [J]. International Journal of Protective Structures, 2010, 1(1): 85–102. DOI: 10.1260/2041-4196.1.1.85.
[32] KOT C A, VALENTIN R A, MCLENNAN D A, et al. Effects of air blast on power plant structures and components [R].
Argonne, Illinois, United States: Argonne National Laboratory, 1978. DOI: 10.2172/6611172.
[33] RIEDEL W, FORQUIN P. Modelling the response of concrete structures to dynamic loading [M]//Understanding the Tensile
Properties of Concrete. Woodhead, 2013: 125–142. DOI: 10.1533/9780857097538.2.125.
[34] HAO H, ZHOU X Q. Concrete material model for high rate dynamic analysis [C]//Proceedings of the 7th International
Conference on Shock and Impact Loads on Structures, Beijing, China. 2007: 753–768.
[35] GEBBEKEN N, GREULICH S, PIETZSCH A. Hugoniot properties for concrete determined by full-scale detonation
experiments and flyer-plate-impact tests [J]. International Journal of Impact Engineering, 2006, 32(12): 2017–2031. DOI:
10.1016/j.ijimpeng.2005.08.003.
[36] MOCK J W, BARTYCZAK S, LEE G, et al. Dynamic properties of polyurea 1000 [J]. AIP Conference Proceedings, 2009,
1195(1): 1241–1244. DOI: 10.1063/1.3295029.
[37] JORDAN J L, CASEM D T, ROBINETTE J. Hugoniot and dynamic strength in polyurea [J]. Journal of Applied Physics,
2022, 131(16). DOI: 10.1063/5.0082477.
[38] CARTER W J, MARSH S P. Hugoniot equation of state of polymers [R]. Los Alamos, New Mexico, United States: Los
Alamos National Laboratory, 1995. DOI: 10.2172/95183.
[39] 郑全平, 钱七虎, 周早生, 等. 钢筋混凝土震塌厚度计算公式对比研究 [J]. 工程力学, 2003, 20(3): 47–53. DOI: 10.3969/j.
issn.1000-4750.2003.03.009.
ZHENG Q P, QIAN Q H, ZHOU Z S, et al. Comparative analysis of scabbing thickness estimation of reinforced concrete
structures [J]. Engineering Mechanics, 2003, 20(3): 47–53. DOI: 10.3969/j.issn.1000-4750.2003.03.009.
[40] GEBBEKEN N, GREULICH S, PIETZSCH A, et al. The engineering-tool XploSim to determine the effects of explosive
loadings on reinforced and fibre reinforced concrete structures [C]//Proceedings of 18th Symposium of Military Aspects of
Blast and Shock, 2004.
[41] MORISHITA M, TANAKA H, ANDO T, et al. Effects of concrete strength and reinforcing clear distance on the damage of
reinforced concrete slabs subjected to contact detonations [J]. Concrete Research and Technology, 2004, 15(2): 89–98. DOI:
10.3151/crt1990.15.2_89.
(责任编辑 王易难)
125101-13

