Page 181 - 《爆炸与冲击》2025年第12期
P. 181
第 45 卷 孙 勇,等: 动态海缆抗多次冲击复合防护层设计及力学性能研究 第 12 期
its high energy absorption efficiency. Further drop hammer impact tests were conducted to investigate the effects of impact
energy and loading cycles on the cushioning and energy absorption characteristics of the composite protective layer. The
experimental results displayed that: (1) under single impact, the peak force and maximum displacement of the composite
protective layer showed a linear positive correlation with the drop hammer mass and impact velocity, with energy absorption
efficiency reaching 85%; (2) under multiple impacts, the mechanical properties of the composite protective layer exhibited
remarkable stability-the maximum displacement in the fourth impact increased by only 5.5% compared with the first impact,
with fluctuations in energy absorption value and instantaneous rebound rate remaining below 5%. The composite protective
layer demonstrates unique mechanical properties that provide effective long-term protection for dynamic submarine cables
under harsh marine conditions.
Keywords: EVA foam; quasi-static compression; dynamic compression; energy absorption; cable protection
海上浮式风机发出的电能需要通过动态海缆进行输送,如图 1(a) 所示。动态海缆主要由导体、绝缘
层、防水层、铠装层和护套层组成,如图 1(b) 所示。在风、波浪、潮汐和海流等环境载荷的共同作用下,
海上浮式风机平台及其动态海缆系统会经历显著的水平位移和垂向升沉运动。这种复杂的运动模式会
导致风机平台与动态海缆之间产生频繁的机械接触和摩擦作用,尤其在极端海况条件下,这种相互作用
更 为 剧 烈 。 长 期 累 积 的 机 械 损 伤 可 能 引 发 动 态 海 缆 的 结 构 失 效 , 最 终 导 致 断 裂 事 故 的 发 生 。 图 2
给出了海上浮式风机动态海缆发生损伤断裂的典型照片,其中包含两种典型失效机制:一是动态海缆与
风机平台边缘棱角发生摩擦而导致的,二是动态海缆与风机平台碰撞而导致的。因此,为确保海上风电
系统的可靠运行,必须采取有效的措施对动态海缆进行保护。目前,针对动态海缆防护研究主要集中在
Restrictive coating Insulating layer
Packed layer
Fan platform Conductor
Dynamic cable
Mooring chain Armour Aquiclude
图 1 海上浮式风机结构图与动态海缆结构剖面图
Fig. 1 Structural image of offshore floating wind turbine and cross-sectional view of dynamic submarine cable
Dynamic cable Submarine cable sheath
Transverse support Transverse support
图 2 动态海缆损伤断裂的工程现场照片
Fig. 2 Photos of damaged dynamic submarine cables
125102-2

